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ABSTRACT

Networks of phase oscillators are studied in various contexts, in particular, in the modeling of the electric power grid. A functional grid cor-
responds to a stable steady state such that any bifurcation can have catastrophic consequences up to a blackout. Also, the existence of multiple
steady states is undesirable as it can lead to transitions or circulatory �ows. Despite the high practical importance there is still no general theory
of the existence and uniqueness of steady states in such systems. Analytic results are mostly limited to grids without Ohmic losses. In this
article, we introduce a method to systematically construct the solutions of the real power load-�ow equations in the presence of Ohmic losses
and explicitly compute them for tree and ring networks. We investigate di�erent mechanisms leading to multistability and discuss the impact
of Ohmic losses on the existence of solutions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5122739

The stable operation of the electric power grid relies on a precisely
synchronized state of all generators and machines. All machines
rotate at exactly the same frequency with �xed phase di�erences,
leading to steady power �ows throughout the grid. Whether such
a steady state exists for a given network is of eminent prac-
tical importance. The loss of a steady state typically leads to
power outages up to a complete blackout. Also, the existence
of multiple steady states is undesirable, as it can lead to sud-
den transitions, circulating �ows, and eventually also to power
outages. Steady states are typically calculated numerically, but
this approach gives only limited insight into the existence and
(non)uniqueness of steady states. Analytic results are available
only for special network con�gurations, in particular, for grids
withnegligibleOhmic losses or radial networkswithout any loops.
In this article, we introduce a method to systematically construct
the solutions of the real power load-�ow equations in the presence
of Ohmic losses. We calculate the steady states explicitly for ele-
mentary networks demonstrating di�erent mechanisms leading

to multistability. Our results also apply to models of coupled
oscillators which are widely used in theoretical physics andmath-
ematical biology.

I. INTRODUCTION

The electric power grid is one of the largest man-made sys-
tems, and a stably operating grid is integral for the entire economy,
industry, and almost all other technical infrastructures. The com-
plexity of the power grid with thousands of generators, substations,
and transmission elements calls for an interdisciplinary approach to
ensure stability in a transforming energy system.1,2 In particular, the
interrelation of structure and stability of complex grids has received
widespread attention in recent years, see, e.g., Refs. 3–11. These
endeavors have been aided by the similarity of mathematical mod-
els across scienti�c disciplines. The fundamental models for power
grid dynamics such as the classical model or the structure-preserving
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model12,13 are mathematically equivalent to the celebrated Kuramoto
model with inertia.14–17 Therefore, results obtained on networks of
Kuramoto oscillators can be easily translated to power grids and vice
versa.

A central question across disciplines is whether a stable steady
state exists and whether it is unique given a certain network struc-
ture. In the context of power grids, it is desirable to have a unique
steady state. Grid operators strive to maintain the �ows across each
line below a certain limit to avoid disruptions. Ensuring this is much
more di�cult if one has to take into account multiple steady states
and hence multiple �ow patterns across the lines. Analytic results
have been obtained for various special cases. In particular, multista-
bility has been ruled out for lossless grids in the two limiting cases
of very densely connected networks14,18 and tree like networks (very
sparse).19 The existence of a steady state is determined by two factors:
the distribution of the real power injections (natural frequencies for
Kuramoto oscillators) and the strength of connecting lines. A variety
of related results have been obtained for tree like distribution grids in
power engineering, see, e.g., Ref. 20.

The situation is more involved for networks of intermedi-
ate sparsity such as power transmission grids, which can give rise
to multistability.11,19,21–25 The existence of multiple steady states in
meshed networks can be traced back to the existence of cycle �ows
that do not a�ect the power balance at any node in the grid. The
number of cycles and the size of the cycles in the grid are thus essen-
tial factors that determine the number of steady states.19 Exploring
the quantitative relationship between these topological factors and
multistability, rigorous bounds on the number of steady states, and
mechanisms for a grid to switch from one steady state to another one
have been found.11,19,23–27

Despite the great theoretical progress, a general theory of the
solvability of the power �ow equations is still lacking. Most analytic
studies focus on lossless grids7,9,11,19,21–26,28,29 or tree like grids.10,20,30–32

Analytic results are extremely rare for the full power �ow equations
with Ohmic losses in meshed networks.21,33,34

In this article, we present a new approach to compute the steady
states of the real power �ow equations in general networks in the
presence of Ohmic losses, extending a prior study of lossless grids.19

Ourmain contribution is a stepwise procedure to construct solutions.
In a �rst step, �ows and losses are treated as independent variables,
turning the load-�ow equations into a linear set of equations. The
inherent relationship between �ows and losses is reintroduced in a
second step. Choosing an appropriate basis for the solution space of
the linear set of equations, we can explicitly compute the coe�cients
that lead to a consistent solution. Using this approach, we show that
Ohmic losses, in general, have two contrary e�ects on the solvability
of the real power �ow equations: On the one hand, increasing losses
require higher line capacities to be able to transport the same amount
of power, thereby potentially destabilizing the grid and thus losing
stable �xed points. On the other hand, we demonstrate for two very
basic topologies that high line losses may also cause multistability,
leading to additional stable �xed points through a mechanism non
existent for the lossless case.

The article is organized as follows: we �rst specify the math-
ematical structure of the problem and �x the notation in Sec. II.
We then brie�y review the lossless case in Sec. III to illustrate
the fundamental importance of cycles and cycle �ows. Section IV

constitutes the main part of the paper, introducing the stepwise
approach. We then investigate two topologies in detail: a tree and a
ring network, for which we lay down the procedures for computing
all the steady states, in Secs. V and VI.

II. STEADY STATES IN POWER GRIDS AND

OSCILLATOR NETWORKS

The load-�ow equations constitute the fundamental model to
describe the steady state of an AC power grid. The system state is
de�ned in terms of the magnitude and phase of the nodal voltages
Vje

iθj , j ∈ {1, . . . ,N}, that have to satisfy the energy conservation law.
The nodes provide or consume a certain amount of real powerPj such
that the real power balance reads

Pj =
∑

k

(

bjkVjVk sin(θj − θk) + gjk

(

V2
j − VjVk cos(θj − θk)

) )

.

(1)

Here, gjk is the conductance of the line (j, k), while the susceptance
is given by −bjk (not +bjk!). By this de�nition, both gjk and bjk are
generally positive for all transmission elements, with gjk = bjk = 0 if
the two nodes j and k are not connected. The variation of the volt-
age magnitudes Vj is intimately related to the provision and demand
for reactive power. In general, generator nodes adapt the reactive
power to �x the voltage to the reference level Vj = Vref, while load
nodes consume a �xed value of reactive power. The voltage magni-
tude Vj can depart from the reference level35 but strict security rules
are imposed to limit this voltage variation. In the present article, we
will focus on the real power balance equation (1) to explore the exis-
tence of solutions and possible routes to multistability. We neglect
voltage variability to reduce the complexity of the problem and refer
to Refs. 9 and 10 for a detailed discussion of this issue. Technically,
this corresponds to the assumption that the reactive power can be
balanced at all nodes. Using appropriate units, referred to as the pu
system in power engineering,36 we can thus set

Vj = Vref = 1,

for all nodes.
The network structure plays a decisive role for the existence and

stability of steady states. This structure is encoded in the coupling
coe�cients b and g. For a given transmission line (j, k)with resistance
rjk and reactance xjk, we have

gjk − ibjk =
1

rjk + ixjk
. (2)

In high voltage transmission grids, Ohmic losses are typically small
such that g is small compared to b. In the limit of a lossless line, we
obtain gjk = 0 and bjk = 1/xjk > 0. In contrast, b and g are of similar
magnitude in distribution grids.

A mathematically equivalent problem arises in the analysis of
steady states of dynamical power system models. In particular, the
dynamics of coupled synchronous machines is determined by the
swing equation37

Mj

d2θj

dt2
+ Dj

dθj

dt
= Pj − Pel

j , (3)
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whose steady states are again determined by Eq. (1). Furthermore,
coupled oscillator models are used to describe the collective motion
of various systems across scienti�c disciplines. For instance, the cel-
ebrated Kuramoto model considers a set of N limit cycle oscillators
whose state is described by their phases θj along the cycle. In many
important applications,38–40 the equations of motions of the coupled
system are given by

dθj

dt
= ωj +

N
∑

k=1

Kjk sin(θk − θj + γjk), (4)

whereωj is the intrinsic frequency of the jth oscillator,Kjk = Kkj is the
coupling strength of the link between oscillators j and k, and γjk = γkj

is a phase shift. The �xed points of this model are determined by
the algebraic equation dθj/dt = 0 that are cast into the following form
by using basic trigonometric identities,

ωj +
∑

k

Kjk sin(γjk) =
∑

k

(

Kjk cos(γjk) sin(θ∗
j − θ∗

k )

+ Kjk sin(γjk)
[

1 − cos(θ∗
j − θ∗

k )
] )

, (5)

where Eθ∗ = (θ∗
1 , . . . , θ

∗
N) is a �xed point. This equation is identical to

the real power balance (1), if we identify Pin
j = ωj +

∑

k Kjk sin(γjk),
bjk = Kjk cos(γjk) and gjk = Kjk sin(γjk). We note that in the limit of a
lossless line, γjk = 0 for all edges. In the following, we will �x a slack
node s that can provide an in�nite amount of power Ps, which trans-
lates as an additional free parameter to the Kuramoto model given
by the frequency at the node corresponding to the slack node ωs.
Therefore, di�erent �xed points, i.e., solutions to Eq. (5), can have
a di�erent frequency at the slack node ωs in this setup, which di�ers
from the way �xed points are typically considered in the Kuramoto
model.

The stability of a given �xed point Eθ∗ is assessed by adding a
small perturbation41 and then using linear stability analysis,

θj = θ∗
j + ξj, j = 1, . . . ,N. (6)

Linearizing the �rst order Kuramoto model in Eq. (4), the time
evolution of the perturbation is given by

dξj

dt
=

N
∑

k=1

wjk(ξk − ξj),

with the weights

wjk = Kjk cos(θ
∗
k − θ∗

j + γjk)

= bjk cos(θ
∗
k − θ∗

j ) − gjk sin(θ∗
k − θ∗

j ).

This relation is expressed in vectorial form as

dEξ

dt
= −3Eξ , (7)

with the Laplacian matrix 3 ∈ R
N×N with elements

3jk =

{

−wjk for j 6= k,
∑

ℓ wjℓ for j = k.
(8)

Before we proceed we note that 3 always has a zero eigenvalue cor-
responding to a global shift of all phases θj → θj + c that does not

a�ect the synchronization of the system. We thus discard this mode
and limit the stability analysis to the subspace perpendicular to it

D⊥={Ey ∈ R
N |(1, 1, . . . , 1)Ey⊤ = 0}. (9)

A steady state is linearly stable if all perturbations inD⊥ are damped
exponentially, which is the case if the real part of all eigenvalues of
3 is strictly positive (except for the zero eigenvalue corresponding to
a global phase shift).

Stability analysis becomes rather simple in the lossless case.
Assuming that the network is connected and that the phase di�er-
ences along any line are limited as

|θ∗
k − θ∗

j | <
π

2
, (10)

matrix 3 is a proper graph Laplacian of an undirected graph, whose
relevant eigenvalues are always positive. Hence, Eq. (10) is a su�cient
condition for linear stability but not a necessary one. Stable steady
states that violate condition (10) do exist at the boundary of the sta-
bility region, but in most cases states with phase di�erences that are
this large are unstable.8,25,42 Hence, we typically focus on states that
do satisfy (10) and refer to this as the normal operation of the grid.19

The stability analysis is more involved in the presence of Ohmic
losses, as 3 is no longer symmetric. Hence, it rather corresponds
to the Laplacian of a directed network, whose stability is harder to
grasp analytically. In this case, we will evaluate the linear stability of
di�erent steady states by direct numerical computations.

However, in the case, where all o� diagonal elements of this
matrix are strictly negative, we are able to gain limited analytical
insight by the following Lemma:

Lemma 1. Let Eθ∗ ∈ R
N be an equilibrium of the Kuramoto

model with phase lags as de�ned in Eq. (4). The equilibrium is linearly
stable if all edges (j, k) have positive weights

wjk = Kjk cos(θ
∗
k − θ∗

j + γjk) > 0, ∀(j, k).

A proof is given in Appendix A. Note that similar results have
also been reported in Ref. 43.

III. THE LOSSLESS CASE

We brie�y review the analysis of the lossless case to introduce
the fundamentals of our approach as well as some notation and
methodology following Ref. 19.

A. Constructing solutions

Consider a graph G consisting of N nodes and M edges. The
lossless case is recovered from Eq. (1) by putting gjk = 0 and assum-
ing Vj = Vref = 1, ∀j. The steady states are then determined by the
equation

EP = IBd sin(I⊤ Eθ). (11)

Here, the sine function is assumed to be taken elementwise, and we
summarized all quantities in a vectorial form

EP = (P1, . . . , PN)⊤ ∈ R
N ,

Eθ = (θ1, . . . , θN)⊤ ∈ R
N ,

Bd = diag(b1, . . . , bM) ∈ R
M×M .
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The topology of the network is encoded in the node-edge incidence
matrix I ∈ R

N×M with elements44

Ij,e =







+1 if node j is the tail of edge e =̂ (j, ℓ),
−1 if node j is the head of edge e =̂ (j, ℓ),
0 otherwise.

(12)

Based on this matrix, we also �x an orientation for each of the net-
work’s edges.45 Steady states exist only if the power injections of the
entire grid are balanced, i.e.,

∑

j Pj = 0, which we assume to hold.
The main idea to construct all solutions of Eq. (11) is to shift

the focus from nodal quantities to edges and cycles of the network.
To do so, we de�ne a vector EF = (F1, . . . , FM)⊤ ∈ R

M of �ows on the
network’s edges

EF = Bd sin(I⊤ Eθ). (13)

If a component of the �ow vector is larger than zero, Fe > 0, the �ow
on link e = (k, j) is directed from k to j and if Fe < 0 from j to k.
Therefore, Fe physically denotes the �ow from the tail of the edge e
to the head of e. Equation (11) then becomes

EP = IEF. (14)

Solutions of Eq. (11)may be constructed by �rst solving Eq. (14)
and then rejecting all solution candidates, which are incompatible
with Eq. (13). Solutions of (14) may be obtained based on the fol-
lowing observation: the kernel of the incidence matrix I corresponds
exactly to cycle �ows, a cycle �ow referring to a constant �ow along
a cycle with no in�ow or out�ow.46–48 The kernel has dimension
M − N + 1, which re�ects the fact that the cycles in a graph forms
a vector space of dimension M − N + 1,49 a basis set of this space
is called a fundamental cycle basis. A set of fundamental cycles B
is encoded in the corresponding cycle-edge incidence matrix C

B ∈
R

M×(M−N+1) with elements

CB
e,c =







+1 if the edge e is part of the cycle c,
−1 if the reversed edge e is part of cycle c,
0 otherwise.

(15)

Then, all solutions of Eq. (14) can be written as

EF = EF(s) + C
BEf , (16)

where EF(s) ∈ R
M is a speci�c solution and Ef ∈ R

M−N+1 gives the
strength of the cycle �ows along each cycle in the chosen cycle
basis. Having obtained a �ow vector EF, we can simply construct the
associated phases as follows. Start at the slack node s and set θs = 0,
then proceed to a neighboring node j. Assuming that the connecting
edge e=̂(j, s) is oriented from node s to node j, the phase value reads

θj = θs + 1e, (17)

where the phase di�erence 1e is reconstructed from the �ow Fe by
inverting Eq. (13),

1+
e = arcsin(Fe/be) or

1−
e = π − arcsin(Fe/be). (18)

For each edge e, we have to decide whether we take the + solu-
tion or the − solution in Eq. (18). To keep track of this choice, we

decompose the edge set of the network E into two parts,

E+ = {e ∈ E | 1e = 1+
e },

E− = {e ∈ E | 1e = 1−
e }

such that E = E+ ∪ E−. Not all solutions obtained this way are phys-
ically correct. We can obtain the physically correct ones by making
sure that the sum of the phase di�erences around any fundamental
cycle yield zero or an integer multiple of 2π , which is equivalent to
the winding numbers

̟c =
1

2π

M
∑

e=1

CB
e,c1

±
e (19)

summarized in the vector E̟ = (̟1, . . . ,̟M−N+1)
⊤ being integer

̟c ∈ Z. It should be noted that the choice 1+
e corresponds to the

state of normal operation discussed in Sec. II. Hence, states with
E− = ∅ are guaranteed to be stable, while states with E− 6= ∅ are
typically (but not always) unstable.8,19,25 We summarize these results
in the following proposition due to Ref. 19.

Proposition 1. Consider a connected lossless network with
power injections EP ∈ R

N . Then, the following two statements are
equivalent:

1. Eθ is a steady state, i.e., a real solution of Eq. (11).
2. The �ows EF ∈ R

M satisfy “dynamic” conditions (14)with |Fe| ≤ be
such that

EF = EF(s) + C
BEf (20)

and geometric condition (19)

E̟ (Ef ) ∈ Z
M−N+1, (21)

for some decomposition E = E+ ∪ E−.

IV. POWER GRIDS WITH OHMIC LOSSES

We now extend the approach introduced above to power grids
with Ohmic losses or oscillator networks with a general trigono-
metric coupling. The steady states are determined by the real power
balance equation [cf. Eq. (1)]

Pj =

N
∑

k=1

(

bjk sin(θj − θk) + gjk
[

1 − cos(θj − θk)
]
)

. (22)

Before we proceed to construct the solution to these equations, we
note an important di�erence to the lossless case. The Ohmic losses
occurring on the lines are not a priori known as they depend on the
phases θ1, . . . , θN . Hence, the real power balance for the entire grid
now reads

N
∑

j=1

Pj = Plosses(θ1, . . . , θN). (23)

Thus, for arbitrary P1, . . . , PN , there will typically be no solution.
This issue is solved by assuming that one of the nodes, referred to
as the slack node, can provide an arbitrary amount of power to bal-
ance the losses. For the sake of consistency, we label the slack as j = 1
throughout this article and set θ1 = 0. We note that the choice of a
particular slack node is often arbitrary. In transmission grids, one
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typically chooses a node with high generation, whereas in distribu-
tion grids, one can choose the connection to the higher grid level.
Other approaches using a distributed slack bus also exist, see, e.g.,
Ref. 50.

To solve the set of Eq. (22) for the remaining nodes
j ∈ {2, . . . ,N}, we decompose it into di�erent parts as before and
�rst formulate a linear system of equations. Before we start, we �x
some notations by de�ning the unsigned incidence matrix E ∈ R

N×M

with elements Ej,e = |Ij,e|. For each edge e=̂(j, k), we now de�ne the
losses by

Le = ge
[

1 − cos(θj − θk)
]

.

Using this notation, the power balance equations can be decom-
posed into three parts. First, we have the dynamic condition, which
now reads

(Ia) Pj =

M
∑

e=1

Ij,eFe + Ej,eLe, ∀ j ∈ {2, . . . ,N}. (24)

Flows and losses are limited by the line parameters, which is repre-
sented by the following conditions:

(Ib)
Fe

be
∈ [−1, 1],

Le

ge
∈ [0, 2], ∀ e ∈ {1, . . . ,M}. (25)

In addition to that, �ows and losses are not independent but are both
functions of the phase di�erence θj − θk. Using the trigonometric
identity sin2 + cos2 = 1, we obtain the �ow-loss condition

(II)

(
Fe

be

)2

+

(
Le

ge
− 1

)2

= 1, ∀ e ∈ {1, . . . ,M}. (26)

Finally, we have a geometric condition as in the lossless case

(III) ̟c(F1, . . . , L1, . . .) = z with z ∈ Z, ∀ cycles c. (27)

In comparison to the lossless case, we have M additional degrees of
freedom L1, . . . , LM and M additional nonlinear conditions (26) to
�x them. Furthermore, the knowledge of both Fe and Le is su�cient
to �x the phases completely. Equation (18) is replaced by

1e =

{
arcsin(Fe/be) if Le ≤ ge,

π − arcsin(Fe/be) if Le > ge.
(28)

Still, there are two solution branches ± per edge as in the lossless
case because quadratic equation (26) has two solutions in general.
We summarize these �ndings in the following proposition.

Proposition 2. Consider a connected lossy network with power
injections EP ∈ R

N . Then, the following two statements are equivalent:

1. Eθ is a steady state, i.e., a real solution of Eq. (22).
2. The �ows EF ∈ R

M and losses EL ∈ R
M satisfy “dynamic” conditions

(24) with |Fe| ≤ be and 0 ≤ Le ≤ 2ge, �ow-loss condition (26),
and the geometric condition

E̟ ∈ Z
M−N+1. (29)

To �nd actual solutions, we thus have to solve the linear set
of Eq. (24) subject to a variety of nonlinear constraints (25)–(27).
Remarkably, this can be accomplished in an iterative fashion such
that we �nd the following general strategy to construct solutions:

1. Construct the solution space of the linear set of Eq. (24), which
yields a potentially large set of solution candidates. This set
is gradually reduced in the further steps until only the actual
solutions are left.

2. Use �ow-loss condition (26) to reduce the degrees of freedom
of the system. In particular, all remaining solution candidates
can be expressed in terms of the cycle �ow strengths and a set
of indices ±, which indicate the solution branch for each edge.

3. Finally, �x the cycle �ows by geometric conditions (27).

Remarkably, we will see in the following that condition (25) on the
line limits is automatically satis�ed, if a real solution of �ow-loss
condition (26) exists, so we do not have to explicitly consider this
condition (see Lemma 2). We further note that the addition of cycle
�ows still does not a�ect the power balance, so the cycle �ows remain
a basic degrees of freedom in Eq. (24). The losses Le are �xed only in
the second step using �ow-loss condition (26). Hence, the resulting
losses depend on the strength of cycle �ows. We now illustrate this
approach by explicitly constructing the solutions for a tree network
and a single cycle. We will show that including losses gives rise to an
additional mechanism of multistability.

V. TREE NETWORKS

We will �rst consider tree networks, i.e., networks without any
closed cycles. Hence, we do not have to take into account geometric
condition (27) and focus on the solution of �ow-loss condition (26).

A. Fundamentals

We�rst introduce the basic notation, see Fig. 1. The slack node is
chosen to be the root of the tree and labeled as j = 1. The remaining
nodes are labeled according to the distance to the root: �rst near-
est neighbors, then next-to-nearest neighbors, and so on. Every edge

FIG. 1. Labeling of nodes (blue circles) and edges (black arrows) in a tree net-
work used in Sec. V A. The slack node is taken as the root of the tree and labeled
as j = 1 as indicated by the letter S and the darker blue coloring.
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e = 1, . . . ,M = N − 1 points to the node e + 1. For each node and
edge, wemust keep track of how it is connected to the root of the tree.
We, thus, introduce matrix T ∈ R

M×M by

Te,j =

{

+1 if edge e is on the path from node j + 1 to the root,

0 otherwise.

Note that the edges are labeled in such a way that Te,k also indicates
whether edge e is on the path from edge k to the root. Furthermore,
we introduce the vectorial notation

EF = (F1, . . . , FM)⊤,

EL = (L1, . . . , LM)⊤,

Ex = (F1, . . . , FM , L1, . . . , LM)⊤.

Dynamic condition (24), then reads

EP = IEx, (30)

wherematrixI ∈ R
(N−1)×2M is obtained by concatenating the signed

and unsigned incidencematrix (I |E) and removing the �rst line cor-
responding to the slack node. In particular, the matrix elements are
given by

Ij−1,e =









+1 if e ≤ M and j is the tail of edge e or if
e > M and j is the tail or head of edge e − M,

−1 if e ≤ M and j is the head of edge e,
0 otherwise.

(31)
First, we need a speci�c solution Ex(s) of dynamic condition (30).

For the sake of simplicity, we choose a solution with no losses, that is,

Ex(s) = (EF(s)
1 , . . . , EF(s)

M , 0, . . . 0)
⊤
, (32)

where

F(s)
e = −

N
∑

j=2

Te,j−1Pj. (33)

Then, we have to construct the general solution to the dynamic con-
ditions, i.e., we need a basis for the N-dimensional kernel of matrix
I . The basis vectors are constructed such that they have losses only
at one particular line, which yields

Ex(e) =

[
EF(e)

EL(e)

]

, ∀ e ∈ {1, . . . ,M},

F(e)
k = 2Te,k + δe,k,

L(e)
k = δe,k,

with the Kronecker symbol δe,k. This set of basis vectors is illustrated
in Fig. 2 for an elementary example. We note that these basis vectors
are linearly independent as required but not orthogonal. All solution
candidates of the dynamic and the �ow-loss conditions can bewritten

FIG. 2. (a) Simple tree network with N = 4 nodes M = 3 edges. Arrows indi-
cate the orientation of edges, which in turn determines the direction of flows.
(b)–(d) Illustration of the basis vectors of the kernel of matrix I. The vectors Exe,
e = 1, 2, 3 include losses at exactly one edge e, indicated by the dotted red
arrows at the terminal nodes, and the flows needed to compensate these losses.

as

Ex = Ex(s) +

M
∑

e=1

αeEx
(e). (34)

In terms of the �ows and losses, this yields

Fe = F(s)
e + 2

N
∑

k=e+1

Te,kαk + αe,

Le = αe. (35)

To simplify the notation, we introduce the abbreviation

Fe = −

N
∑

j=2

Te,j−1Pj + 2
N

∑

k=e+1

Te,kαk, (36)

which is the �ow on the line eminus the losses,

Fe = Fe − Le = Fe − αe.

Now, we can calculate the parameters αe by substituting ansatz
(35) into �ow-loss condition (26),

(
Fe + αe

be

)2

+

(
αe

ge
− 1

)2

= 1. (37)

To solve these quadratic equations, we now have to proceed itera-
tively from e = N − 1 to e = 1 as the quantity Fe depends on the
losses αk on the lines k = e + 1, . . . ,N − 1. In each step, we have to
check whether the solutions are real, positive, and respect the line
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FIG. 3. Multiple solutions in a tree network with Ohmic losses. The possible values of the line losses αe are shown as a function of the conductance g for the simple four
node tree network shown in Fig. 2 and parameters b = 10, P2 = −1, P3 = −1, and P4 = −2 for varying g as calculated according to Eq. (44). Solid, colored lines indicate
dynamically stable solutions and dotted, colored lines indicate unstable ones. The black dotted line indicates points with αe = g, thus determining which branch to choose
when calculating angular differences according to Eq. (28). (a) and (b) Branching of α2 and α3 into two different solutions according to the different signs of the square root
in the expression [Eq. (44)]. (c) The solutions found for α2 and α3 can be used to subsequently calculate the solutions for α1. The solutions depend on the signs σe for all
lines e = 1, 2, 3 such that we find 23 solution branches in total. The signs indicated in the legend are ordered as (σ3, σ2, σ1). In the region shaded in gray, there are two
coexisting stable solutions.

limits (25). Fortunately, these conditions can be simpli�ed to a single
inequality condition as stated in the following lemma.

Lemma 2. Equation (37) has two real positive solutions α±
e ,

which both satisfy the line limits (25) if and only if

b2e ≥ F
2
e + 2geFe. (38)

The two solutions coalesce in the case of equality.
We emphasize that condition (38) has to be satis�ed for all edges

e ∈ {1, . . . ,M}, which again has to be veri�ed iteratively. A proof of
this result is given in Appendix B.

Finally, we can summarize our �ndings as follows.
Lemma 3. All potential solutions of the dynamic conditions and

the load-�ow condition for a tree network can be written as

Fe = −

N
∑

j=2

Te,j−1Pj + 2
N

∑

k=e+1

Te,kαk

︸ ︷︷ ︸

=:Fe

+αe,

Le = αe,

where the parameters αe, e ∈ {M,M − 1, . . . , 1}, are determined iter-
atively as

α±
e =

gebe

(g2e + b2e)

[

be −
ge

be
Fe − σe

√

b2e − F 2
e − 2geFe

]

, (39)

where the sign σe ∈ {−1,+1} indicates the solution branch. Hence,
each potential solution is uniquely characterized by the sign vector
Eσ = (σ1, . . . , σM)⊤ ∈ {−1,+1}M .

B. Example

As an example, we consider a grid withN = 4 nodes andM = 3
edges as depicted in Fig. 2(a). The node-edge incidence matrix I and
itsmodulus E read

I =






+1 0 0
−1 +1 +1
0 −1 0
0 0 −1




 ⇒ E =






+1 0 0
+1 +1 +1
0 +1 0
0 0 +1






and the tree matrix is given by

T =





+1 +1 +1
0 +1 0
0 0 +1



 .

Dynamic condition (24) thus reads








P2 = −F1 + F2 + F3 + L1 + L2 + L3,

P3 = −F2 − L2,

P4 = −F3 − L3.

A particular solution of these equations is given by

Ex(s) =

[
EF(s)

EL(s)

]

= (−P2 − P3 − P4,−P3,−P4, 0, 0, 0)
⊤

and the kernel is spanned by the basis vectors

Ex1 = (1, 0, 0, 1, 0, 0)⊤,

Ex2 = (2, 1, 0, 0, 1, 0)⊤,

Ex3 = (2, 0, 1, 0, 0, 1)⊤,
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FIG. 4. Number of stable fixed points (color code) of the lossy real power flow
Eq. (1) for the four node tree network shown in Fig. 2(a) with power injections
P2 = −1, P3 = −1, and P4 = −2 for varying line susceptance b (abscissa) and
conductance g (ordinate). Whereas aminimum line capacity is required to result in
any stable fixed points in the same way as for the lossless power flow, two effects
that do not exist in the lossless case may be observed: Increasing conductances
g and thus losses requires for higher line capacities b as expected. In addition
to that, an additional stable fixed point arises for higher losses, thus presenting a
different mechanism for multistability.

which are illustrated in Figs. 2(b)–2(d). Hence, the general solution
can be written as

Ex =










F1
F2
F3
L1
L2
L3










=













F(S)
1 + 2α3 + 2α2 + α1

F(S)
2 + α2

F(S)
3 + α3

α1

α2

α3













.

The coe�cients αe, e ∈ {1, 2, 3}, are directly calculated in the order
e = 3, 2, 1 via Eq. (39) with F3 = F(s)

3 , F2 = F(s)
2 , and F1 = F(s)

1 +
2α±

2 + 2α±
3 . We recall that in contrast to the cyclic case, we do not

have to consider the geometric condition. The values ofα±
e and hence

also the �ows and losses depend only on the signs (σ1, σ2, σ3)—and
of course on the system parameters.

To explore the emergence of multistability in networks with
Ohmic losses, we plot the di�erent solution branches as a function
of the conductances g in Fig. 3. For the sake of simplicity, we assume
that all lines have the same parameters and keep both b and the power
injections �xed. In the limit g → 0, we trivially have αe = 0, for all
edges such that the functions α+

e and α−
e coalesce. However, this does

not imply that equilibria themselves coalesce, cf. Eq. (18). For small
values of g, the line lossesαe then increase approximately linearly, and
we �nd 23 di�erent solutions in total, corresponding to the di�erent

FIG. 5. Labeling of nodes (blue circles) and edges (black arrows) in a cyclic net-
work used in Sec. VI A. The slack node is located at j = 1 and indicated here by
the letter S and a coloring in darker blue.

choices of the signs (σ1, σ2, σ3). For each edge, the + branch corre-
sponds to a solution with low losses Le < ge and the − branch to a
solution with high losses Le > ge. Nonlinear e�ects become impor-
tant for higher values of g: The losses in the + branches increase
superlinearly, while the− branches show a nonmonotonic behavior.
For even higher values of g, solutions vanish pairwise. The solution
branches Eσ = (+,+,+)with the lowest overall losses and the branch
Eσ = (+,+,−) vanishes last.

We further evaluate the dynamical stability for each solution
branch by numerically testing the eigenvalues of matrix 3 de�ned
in (8). The weights used in this Laplacian matrix can be rewritten
directly in terms of the �ows and losses. If nodes j and k are connected
via edge e, we obtain

wjk =
be

ge
(ge − Le) ±

ge

be
Fe,

where the minus sign is chosen if j is the tail and k is the head of edge
e and the plus sign is chosen if k is the tail and j is the head of edge e.

The results for the stability of the di�erent solution branches are
indicated by displaying the lines as either dashed (unstable) or solid
(stable) in Fig. 3. We �nd that only the (+,+,+)-branch is stable
for low losses. This is expected because in the lossless case, there can
be at most one stable solution.19 The (+,+,+)-branch continuously
merges into this stable solution in the limit g → 0.More interestingly,
also the (+,+,−)-branch becomes stable for large values of g. Hence,
losses can stabilize �xed points.

A comprehensive analysis of the existence of solutions for the
given sample network in terms of the grid parameters b and g is given
in Fig. 4. Remarkably, the presence of Ohmic losses has two anti-
thetic e�ects on the solvability of the real power load-�ow equations:
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On the one hand, losses can prohibit the existence of solutions. Real
power �ows are generally higher in lossy networks as losses have to
be balanced by additional �ows. Hence, the minimum line strength b
required for the existence of a solution increases with g. On the other
hand, losses facilitate multistability. While the lossless equation can
have at most one stable �xed point for tree networks, two stable �xed
points can exist if losses are added.

For example, for three consumer nodes with power injections
P2 = −1, P3 = −1, and P3 = −2 and uniform line parameters of
b = 10 and g = 8, we �nd a dynamically stable solution branch
with Eσ = (+,+,−) with �ows EF ≈ (9.01, 1.04, 2.2)⊤ and losses
EL ≈ (4.54, 0.04, 0.2)⊤ and another one with Eσ = (+,+,+) with
�ows EF ≈ (6.2, 1.04, 2.2)⊤ and losses EL ≈ (1.73, 0.04, 0.2)⊤.We recall
that node 1 serves as a slack node. Hence, the power injection P1 (or
the natural frequency ω1 in the oscillator context) is di�erent for the
two stable steady states.

VI. CYCLIC NETWORK

A. Fundamentals

We now consider a single closed cycle as depicted in Fig. 5. We
label all nodes by j ∈ {1, . . . ,N} around the cycle in the mathemati-
cally positive direction starting at the slack node j = 1. Similarly, we
label all lines e ∈ {1, . . . ,N}, where line e corresponds to (e, e + 1)
and line e = N corresponds to (N, 1).

We now construct the solutions of dynamic condition (30). As
before, we choose a speci�c solution with no losses [cf. Eq. (32)],
where the �ows satisfy

Pj =

N
∑

e=1

Ij,eF
(s)
e , ∀j ∈ {2, . . . ,N}.

A solutions always exists as the linear set of equations has rankN − 1.
A proper initial guess can be obtained, for example, by solving theDC
approximation.36

To construct the general solution, we further need a basis for the
(N + 1)-dimensional kernel of matrix I . As before, we use a set of
basis vectors that have losses only at one particular line,

Ex(e) = (2, . . . , 2
︸ ︷︷ ︸

e−1 times

, 1, 0, . . . , 0
︸ ︷︷ ︸

N−e times

, 0, . . . , 0
︸ ︷︷ ︸

e−1 times

, 1, 0, . . . , 0
︸ ︷︷ ︸

N−e times

)⊤. (40)

In contrast to the tree network, we need an additional basis vector
describing a cycle �ow

Ex(N+1) = (1, 1, . . . , 1
︸ ︷︷ ︸

N times

, 0 . . . , 0)⊤. (41)

This set of basis vectors is illustrated in Fig. 6. All solution
candidates of the dynamic and the �ow-loss conditions can thus be
written as

Ex = Ex(s) + f Ex(N+1) +

N
∑

e=1

αeEx
(e), (42)

FIG. 6. Illustration of the basis vectors of the kernel of matrix I for a small
cyclic network with N = 3 nodes. (a)–(c) The vectors Exe, e = 1, . . . ,N, include
losses at exactly one edge e, indicated by the dotted red arrows at the terminal
nodes, and the flows needed to compensate this loss. (d) The basis vector ExN+1

represents a lossless cycle flow.

where f ∈ R is a parameter giving the cycle �ow strength. In terms
of the �ows and losses, this yields

Fe = F(s)
e + f + 2

N
∑

n=e+1

αn

︸ ︷︷ ︸

=:Fe

+αe,

Le = αe. (43)

As before, we can now calculate the parameters αe iteratively
from e = N to e = 1 using Eq. (39)

α±
e =

gebe

(g2e + b2e)

[

be −
ge

be
Fe − σe

√

b2e − F 2
e − 2geFe

]

. (44)

However, we now have to take into account that the quantities Fe

also depend on the parameter f—the cycle �ow strength. Hence, each
potential solution is now characterized by the continuous parameter
f in addition to the signs σ1, . . . , σN ∈ {−1,+1}. Whether a solution
exists and respects the line limits can be determined from Lemma
2, in particular, from condition (38). We stress that this condition
must be satis�ed for all edges e ∈ {1, . . . ,N} simultaneously, keeping
in mind that the quantities Fe depend on the values Fe+1, . . . ,FN

and the cycle �ow strength f . Hence, condition (38) must be checked
iteratively for all e = N,N − 1, . . . , 1 in dependence of the value of f .

In a cyclic network, we further have to satisfy geometric condi-
tion (27), which �xes the remaining continuous degree of freedom f .

Chaos 29, 123119 (2019); doi: 10.1063/1.5122739 29, 123119-9

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

FIG. 7. Simple cycle network with three nodes (dark blue circles) and three edges
(black arrows). (a) Arrows indicate the orientation of edges, which, in turn, deter-
mines the direction of flows. We consider a network with power injections at the
nodes P1, P2, and P3 and power flows on the edges denoted F1, F2, and F3. (b)
Example studied in Sec. VI B. The node j = 1 is chosen as a slack node (indi-
cated by symbol S) and the two other nodes are assumed to be consumer nodes
with P2,3 = −P. Arrows again represent the edge orientations and the values

give the specific solution F
(s)
1 = P, F

(s)
2 = 0, and F

(s)
3 = −P.

For a single cycle, the winding number is given by

̟ Eσ =
1

2π

M
∑

e=1

1σe
e .

The phase di�erences 1σe
e and hence the winding number are deter-

mined by the line �ows and losses via Eq. (28) and depend on the
respective solution branch indicated by the signs Eσ . Recall that the
geometric condition states that the winding number ̟ can be an
arbitrary integer. Hence, there can be multiple solutions for f for a
given set of signs σ1, . . . , σN , if the cycle is large enough. This route to
multistability was analyzed in detail for lossless networks in Ref. 19.

B. Example

We analyze here a three-node cycle shown in Fig. 7, where node
1 is the slack node. The node-edge incidencematrix I and itsmodulus
E will then be

I =





+1 0 −1
−1 +1 0
0 −1 +1



 ⇒ E =





+1 0 +1
+1 +1 0
0 +1 +1



 .

Dynamic condition (24), thus reads

{

P2 = F2 − F1 + L1 + L2,

P3 = F3 − F2 + L2 + L3.

A particular solution of these equations is given by

Ex(s) =

[
EF(s)

EL(s)

]

= (−P2, 0,+P3, 0, 0, 0)
⊤

and the kernel is spanned by the basis vectors

Ex1 = (1, 0, 0, 1, 0, 0)⊤,

Ex2 = (2, 1, 0, 0, 1, 0)⊤,

Ex3 = (2, 2, 1, 0, 0, 1)⊤,

Ex4 = (1, 1, 1, 0, 0, 0)⊤,

FIG. 8. The possible values of line losses α1,2,3 as a function of the cycle flow strength f for the simple three-node cycle network shown in Fig. 7 and parameters P = −1,
g = 1, and b = 4. Black dotted line indicates values where αe = g, thus determining the sign of angular differences according to Eq. (28). (a) Branching of α3 into two
different solutions referred to as α+

3 (dark red, bottom) and α−
3 (dark green, top) for the different signs of the square root as predicted by Eq. (44). (b) and (c) The solutions

found for α3 can be used to subsequently calculate the solutions for α2 and then α1. The signs indicated here in the legend are ordered as (σ3), (σ3, σ2), and (σ3, σ2, σ1)

for panels (a), (b), and (c), respectively.
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which are illustrated in Fig. 6. Hence, the general solution can be
written as

Ex =










F1
F2
F3
L1
L2
L3










=












F(s)
1 + f + 2α3 + 2α2 + α1

F(s)
2 + f + 2α3 + α2

F(s)
3 + f + α3

α1

α2

α3












. (45)

The coe�cients α1,2,3 are calculated as a function of f iteratively
starting from N = 3 via Eq. (44) with F3 = F(s)

3 + f , F2 = F(s)
2 +

f + 2α±
3 , and F1 = F(s)

1 + f + 2α±
2 + 2α±

3 . The results are shown in
Figs. 8(a)–8(c) for all di�erent possible realizations of the sign vector
(σ1, σ2, σ3): for α3, we have 2 choices, then for α2, we have 22 = 4
choices (two choices for each of α2 and α3), and �nally, we have
23 = 8 choices for α1. For the sake of simplicity, we have chosen
P2 = P3 = 1 in this example. Notably, all branches of the solutions
must form closed curveswhen plotted via the parameter f . This is due
to the fact that a real solution of Eq. (44) can only vanish when the
discriminant goes to zero, i.e., when it collides with another branch
of the solution.

The remaining parameter f is determined by geometric con-
dition (27). To evaluate this condition and to �nally determine all
steady states, we plot the winding number

̟ Eσ (f ) =
1

2π

M
∑

e=1

1σe
e

as a function of f in Fig. 9. The phase di�erences are given by
[cf. Eq. (28)]

1σe
e =

{

arcsin(Fe/be) if Le ≤ ge,
π − arcsin(Fe/be) if Le > ge.

FIG. 9. The winding number ̟ as a function of the cycle flow strength f for dif-
ferent solution branches in the three-node network depicted in Fig. 7. Solutions
require that ̟ ∈ Z, cf. Eq. (27). Color code as in Fig. 8(c) for all panels.

They depend on the solution branch, i.e., on the values of σe and
so does the winding number. For the given cyclic network, we �nd
23 solution branches, which have to be considered when evaluating
the geometric condition (see Fig. 9). Inspecting the winding number
̟ Eσ (f ) for each branch, we �nd 2 steady states of which one is stable
and the other is unstable. Again, the stable �xed point is given by the
(+,+,+)-branch, which has the lowest Ohmic losses.

However, we can �nd two dynamically stable branches for
higher losses as in the case for the tree network. For example, �xing
line susceptances and conductances b = g = 3 and power injections
P2 = P3 = −1, we �nd again two dynamically stable branches corre-
sponding to low losses Eσ = (+,+,+) and high losses Eσ = (+,+,−).

VII. SUMMARY AND DISCUSSION

In this article, we studied solutions to the real power load-�ow
equations in AC transmission grids of general topology with a special
focus on the impact of Ohmic losses. Extending our previous work,19

we constructed an analytical method for computing all load-�ow
solutions, both stable and unstable ones. We demonstrated how to
explicitly compute all steady states in two elementary test topologies:
a 4-node tree and a 3-node ring.

We �nd that analogous to the lossless case, di�erent solutions
exist corresponding to di�erent winding numbers (19) along each
basis cycle, as well as a choice between two solution branches in each
edge. The two branches correspond to a state with low losses and
phase di�erences on the respective edge (+ branch) and high losses
and phase di�erence (− branch).

We show that Ohmic losses have two con�icting e�ects on the
existence and number of steady states: On the one hand, high losses
must be compensated by higher �ows. Hence, solutions may vanish
due to Ohmic losses unless the line capacities are also increased. On
the other hand, Ohmic losses can stabilize certain solution branches
and thus foster multistability. In particular, we demonstrate that two
grid topologies that have been proven to exhibit no multistability in
the lossless case—trees and 3-node rings—aremultistable in the lossy
case for certain parameter values.
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APPENDIX A: PROOF OF LEMMA 1

Proof . The result can be proven by making use of Gershgorin’s
circle theorem.51 Recall that the equilibrium is linearly stable if all the
eigenvalues µj of the Laplacian 3 have a positive real part,

Re(µj) > 0, ∀j ∈ {1, . . . ,N − 1},

except for the eigenvalue µN = 0 corresponding to a global phase
shift. According to Gershgorin’s theorem, each eigenvalue µj is
located in a disk in the complex plane with radius Rj =

∑

ℓ 6=j |3j,ℓ|
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centered at 3j,j. If the condition wjk > 0 is satis�ed, we have that
|3j,ℓ| = −3j,ℓ. Therefore, applying Gershgorin’s theorem results in
the following inequality:

|µj − 3j,j| ≤
∑

ℓ 6=j
|3j,ℓ| = 3j,j.

This inequality thus predicts that all eigenvalues µj have real part
greater than or equal to zero Re(µj) ≥ 0.Now, it remains to show that
the eigenvalue µN to the eigenvector (1, 1 · · · , 1)⊤ is the only zero
eigenvalue. Assume that Ev ∈ R

N is an eigenvector with eigenvalue
µ = 0. Assume that this vector has its minimum entry at posi-
tion i such that vi = min(vj), j ∈ {1, . . .N} and hence vi − vj ≤ 0, ∀j.
Then, we arrive at

0 = (3Ev)i =
∑

j6=i

3ij(vi − vj).

Since the o� diagonal elements3ij are all negative by the assumption
of the lemma, it follows that the entries of the vector at neighboring
nodes equal its minimum value vi = vj. We can now apply the same
reasoning for next-nearest neighbors and proceed in the same way
through the whole network to show that

vi = vj, ∀j ∈ {1, . . .N},

which proves that Ev = (1, . . . , 1)⊤ is the only eigenvector with van-
ishing eigenvalue µ = 0. �

APPENDIX B: PROOF OF LEMMA 2

Proof . We �rst note that if condition (38) is satis�ed, the dis-
criminant in Eq. (39) is non-negative such that all solutions are
real. The two solutions coalesce if the discriminant vanishes, i.e., if
b2e = F

2
e + 2geFe. Conversely, if condition (38) is not satis�ed, the

discriminant in Eq. (39) is negative such that no real solution exists.
It remains to be shown that if a solution exists, then it is posi-

tive and respects the line limits. To this end, we rewrite the �ow-loss
condition (26) as

(
αe

ge
− 1

)2

︸ ︷︷ ︸

=:l(αe)

= 1 −

(
αe + Fe

be

)2

︸ ︷︷ ︸

=:r(αe)

. (B1)

The two parabola l(αe) and r(αe) are illustrated in Fig. 10. The left-
hand side l(αe) is non-negative everywhere with

l(αe) ∈ [0, 1] if αe ∈ [0, 2ge],
l(αe) > 1 if αe /∈ [0, 2ge].

The right-hand side is smaller or equal to one with

r(αe) ∈ [0, 1] if αe ∈ [−be − Fe,+be − Fe],
r(αe) < 0 if αe /∈ [−be − Fe,+be − Fe].

Hence, we �nd the necessary condition for the crossing of the two
parabola as

l(αe) = r(αe) ∈ [0, 1],

Le = αe ∈ [0, 2ge],

Fe = Fe + αe ∈ [−be,+be].

That is, if a solutionαe exists, it is guaranteed to be positive and satisfy
the line limits.

FIG. 10. Illustration of the two function l(αe) and r(αe) used in the proof of
Lemma 2 for arbitrary parameter values g = 0.7, b = 1.4, andF = 1.

�
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