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Reflecting the fundamental interactions of polarized light with magnetic matter, magneto-optical effects

are well known since more than a century. The emergence of these phenomena is commonly attributed

to the interplay between exchange splitting and spin-orbit coupling in the electronic structure of mag-

nets. Using theoretical arguments, we demonstrate that topological magneto-optical effects can arise in

noncoplanar antiferromagnets due to the finite scalar spin chirality, without any reference to exchange

splitting or spin-orbit coupling. We propose spectral integrals of certain magneto-optical quantities that

uncover the unique topological nature of the discovered effect. We also find that the Kerr and Faraday

rotation angles can be quantized in insulating topological antiferromagnets in the low-frequency limit,

owing to nontrivial global properties that manifest in quantum topological magneto-optical effects. Al-

though the predicted topological and quantum topological magneto-optical effects are fundamentally dis-

tinct from conventional light-matter interactions, they can be measured by readily available experimental

techniques.
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tal techniques.

Results

Topological magneto-optical (TMO) effects. Let us start
with the TMO effects by considering the example of a three-
dimensional (3D) face-centered-cubic (fcc) lattice, shown in
Fig. 1b. We focus on the so-called 3Q spin structure19, for
which four magnetic sublattices form of a regular tetrahedron,
and the spin on each sublattice points to the center of the tetra-
hedron, resulting in a fully compensated nc-AFM order. To
describe conduction electrons interacting with the localized
spin moments Si (|Si| = 1), the Hamiltonian is expressed by
the Kondo lattice model:

H = −
∑

〈ij〉

tijc
†
iαcjα − J

∑

i

c†iασαβciβ · Si. (1)

Here, c†iα (ciα) is the electron creation (annihilation) operator
on site i with spin α, σ is the vector of Pauli matrices, tij
denotes the nearest-neighbor transfer integral, and J is the on-
site exchange coupling.

For the 3D fcc lattice, a proper strain can be used to gen-
erate a nonzero fictitious magnetic field19, which effects the
magneto-response properties of the system and ultimately
leads to activating the TMO effect. Considering each face
of the tetrahedron, the three noncoplanar spins provide a fic-
titious magnetic flux bf ∝ t3χijkn̂f , where t3 = tijtjktki is
the successive transfer integral along a loop i → j → k → i,
χijk = Si ·(Sj×Sk) is the scalar spin chirality19–21, and n̂f is
a unit vector normal to the face. This fictitious magnetic flux
essentially comes from the orbital motion of electron because
a Berry phase, being equivalent to the solid angle spanned by
three neighboring spins, is picked up by the electron hopping
along a closed loop on the triangular plaquette. The total fic-
titious magnetic field in the 3D fcc lattice is the vector sum of
the magnetic fluxes on the four faces of the tetrahedron, i.e.,

B =
∑4

f=1 bf . In the unstrained case, B is zero because the
four fluxes cancel each other exactly (Fig. 1b). After a uni-
axial strain, characterized with a parameter δ (see Methods),
is introduced along the [111] direction, the fictitious field is
B = Bn̂[111] with B 6= 0 and the unit vector n̂[111] pointing
into the [111] direction. The effect of this fictitious magnetic
field is equivalent to the nonzero net magnetization in a ferro-
magnet or the external magnetic field applied to a nonmagnet,
and thus the response of a 3D fcc nc-AFM to the left- and
right-circularly polarized lights is inevitably different.

The role of strain can be understood in a more fundamen-
tal way from the symmetry point of view. In fact, the shape
of linear response tensors can be fully determined by a group-
theoretical analysis22. The magnetic point group of the 3D fcc
nc-AFM is m3̄m′23, which suppresses the magneto-optical
conductivity σxy(ω). The strain considered here removes all
the symmetries containing fourfold rotations and the magnetic
point group is lowered to 3̄1m′. As a consequence, this sym-
metry breaking facilitates nonvanishing magneto-optical con-
ductivity, i.e., σxy(ω) = −σyx(ω) 6= 0. Note that the con-
ductivity tensor σ is a coordinate-dependent quantity. For
the convenience, we choose the [11̄0], [112̄], and [111] di-
rections of the fcc lattice as the x, y, and z axes, respectively

(Fig. 1). Owing to the finite fictitious magnetic field that orig-
inates from the chiral spin structure in the strained case, the
emergence of the transverse conductivity tensor components
does not rely on the presence of SOC.

To confirm the symmetry analysis, we explicitly calculate
the magneto-optical conductivity using the Kubo formula24,

σxy(ω) = ~e2
∫

d3k

(2π)3

∑

n 6=n′

(fnk − fn′k)

×
Im [〈ψnk|vx|ψn′k〉 〈ψn′k|vy|ψnk〉]

(ǫnk − ǫn′k)2 − (~ω + iη)2
, (2)

where vi is the ith Cartesian component of the velocity op-
erator, ǫnk is the energy of the nth band at Bloch vector k,
fnk is the Fermi-Dirac distribution function, ~ω is the photon
energy, and η is an adjustable smearing parameter. Figure 2b
shows the real and imaginary parts of σxy(ω) computed for
the model given by Eq. 1. It is evident that σxy(ω) turns out
to be nonzero if the strain is applied (δ 6= 1), and it increases
with increasing |δ − 1|. Upon inverting the direction of the
applied strain, σxy(ω) changes its sign as the texture-induced
emergent field is reversed. Based on nonzero σxy(ω) , the
coupling of this magnetic field to polarized light can manifest
in Kerr and Faraday effects in chiral AFMs as described by
Eqs. 8 and 9 below.

In the absence of SOC, the bands are spin degenerate re-
gardless of the strain (Fig. 2a). This degeneracy is guaranteed
by a fractional lattice translation combined with a pure spin
rotation. For example, the sublattices are exchanged (1 ↔
2, 3 ↔ 4) under a fractional translation (a/2,b/2, 0) along
the [110] direction. After that, a spin rotation around the C2

axis (Fig. 1d) restores the initial state (S1 ↔ S2,S3 ↔ S4).
This degeneracy will be split by the SOC since in this case the
spin is coupled to the lattice such that a pure spin rotation is
not allowed.

The magneto-optical effects in 3D fcc nc-AFMs have a
topological origin, in analogy to the topological Hall effect,
since they are rooted in scalar spin chirality rather than SOC.
More importantly, the BES is not a necessary condition for
the emergence of magneto-optical effect, in contrast to the
usual wisdom. The TMO effects we discovered here, requir-
ing neither SOC nor BES, differ fundamentally from the con-
ventional magneto-optical effects which have been intensively
studied before. Therefore, the TMO effects have to be classi-
fied into the category of topological light-matter interactions.

Quantum topological magneto-optical (QTMO) effects.

After uncovering the novel topological light-matter interac-
tions in chiral AFMs, we now elucidate the intriguing cases in
which the resulting topological magneto-optical phenomena
take quantized values. In particular, we will demonstrate that
the characteristic Kerr and Faraday rotation angles amount
to values that depend not on details of the electronic struc-
ture but rather on global nontrivial properties of the antiferro-
magnetic system. As an example, we consider a 2D nc-AFM
with a triangular lattice and chiral 3Q spin structure as shown
in Fig. 1c. By parallel transporting the four spins to have a
common origin, we realize that they span a solid angle of 4π
(Fig. 1d). It becomes intuitively clear that the nontrivial spin
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FIG. 2. Electronic structure and magneto-optical conductivity of 3Q noncoplanar antiferromagnets. (a) Band structure of the 3D fcc

lattice (J/t = 1.0). (b) Magneto-optical conductivity of the 3D fcc lattice (η = 0.1t). Up and down panels show the real and imaginary

parts with different δ, respectively. The relation σxy(ω) ∝ B can be verified since, as shown in the inset, both σR
xy(ω = 0) and B are

proportional to δ. (c) Band structure and anomalous Hall conductivity of the 2D triangular lattice. (d) Magneto-optical conductivity of the 2D

triangular lattice (η = 0.1t). The Fermi energy corresponds to the 3/4 band filling. The inset enlarges the low-frequency region of σR
xy . The

dashed vertical lines mark the band gaps at 3/4 filling (Eg). The shaded area marks the low-frequency limit (~ω ≪ Eg) in which the quantum

topological magneto-optical effects arise.

texture can in principle give rise to quantized Hall transport25.
The band structure and the anomalous Hall conductivity of
the 2D triangular lattice are illustrated in Fig. 2c. As com-
pared to the 3D fcc lattice, while the spin degeneracy of the
bands remains, local band gaps occur between each pair of de-
generate bands characterized by the Chern number C = ±1
and a quantized anomalous Hall conductivity σxy = Ce2/h.
The global band gap at 1/4 filling is closed when J/t < 0.7,
while the one at 3/4 filling survives for arbitrarily small J/t
and hence holds a spontaneous quantum Hall effect26,27. This
intriguing quantum state, originating from the spin chirality
instead of the SOC, is called quantum topological Hall (QTH)
insulator28. While the dc Hall conductivity due to spin chi-

rality has been studied for the 2D triangular lattice be-

fore26,27, here, we aim for its generalization in terms of a

charge response to optical fields with finite frequency ω,

which has been overlooked so far. Since the magnetic point
group of the 2D triangular lattice is 3̄1m′, nonzero σxy(ω)
is indeed symmetry-allowed (Fig. 2d). This implies that the
TMO effects mediated solely by the complex spin topology

can exist in a QTH insulator.
Even more remarkably, the TMO effects emerging in the

QTH insulators should be quantized in the low-frequency
limit. The underlying physics is that for the QTH insula-
tor, in analogy to the Chern insulator, the Maxwell’s equa-
tions are modified by adding the magnetoelectric (axion) term
(Θα/4π2)E · B into the usual Lagrangian29. The magne-
toelectric polarizability (axion angle) Θ is quantized modulo
2π and in particular, Θ = π and Θ = 0 classify topologically
nontrivial and trivial insulators, respectively. By combining
the modified Maxwell’s equations and the free-standing slab
geometry, one finds that in the low-frequency limit (~ω ≪ Eg,
where Eg is the topologically nontrivial band gap) the Kerr
and Faraday rotation angles in QTH insulators can be written
as30–32

θK = − tan−1
[

c/(2πσR
xy)

]

, (3)

θF = tan−1(2πσR
xy/c), (4)

where c is the velocity of light in vacuum and σR
xy is the real

part of magneto-optical conductivity. The inset in Fig. 2d
clearly shows that σR

xy(ω → 0) = Ce2/h (C = 1 for the
2D triangular lattice) − thus, the quantized Kerr and Faraday
angles occur inevitably with θK = − tan−1(1/Cα) ≃ −π/2
and θF = tan−1(Cα) ≃ Cα, where α = e2/~c ≃ 1/137 is
the fine structure constant. Recently, such kinds of quantized
magneto-optical and magnetoelectric effects have been exper-
imentally observed in various Chern insulator thin films33–37.

Realizing TMO and QTMO effects. Armed with the above
insights from the model analysis, we now consider real mate-
rials by taking γ-FexMn1−x and KxRhO2 as prototypes that
exhibit the TMO and the QTMO effects, respectively.

Disordered γ-FexMn1−x alloys exhibit the multi-Q spin
texture in an fcc lattice, as evidenced by neutron diffraction
measurements38,39. The 1Q (Fig. 3a) and 2Q (Fig. 3c) states
are collinear AFMs which appear in the concentration range
of x < 0.4 or x > 0.8, while the 3Q state (Fig. 3b) as a non-
collinear AFM exists when 0.4 < x < 0.8. We first examine
the electronic and magneto-optical properties in 3Q spin tex-
ture (e.g., γ-Fe0.5Mn0.5). Under strain along the [111] direc-
tion, the band structure without SOC remains doubly degener-
ate (see Supplementary Figure S1), while the magneto-optical
conductivity σxy(ω) turns out to be nonzero (see Supplemen-
tary Figure S2). As a consequence, the Kerr and Faraday ro-
tation angles, depicted in Figs. 3d,e, clearly depend on the
strain. Their values are not changed after the SOC is switched
on (see Supplementary Figure S3, taking δ = 0.95 as an ex-
ample). This signifies the emergence of the TMO effects root-
ing entirely in the spin chirality, similarly to the topological
orbital magnetization and topological Hall effect occurred in
γ-FexMn1−x

40,41. The discovery here differs from the case of
the pyrochlore ferromagnet Nd2Mo2O7

42, in which both the
spin chirality and the SOC contribute to the Kerr effect. The
magneto-optical strength (MOS) for the Kerr and Faraday ef-
fects, defined by MOSK,F =

∫∞

0+
~|θK,F(ω)|dω, can be used

to analyze the whole trend of magneto-optical effects. Fig. 3f
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QTMO effects can emerge in AA-stacked K0.5RhO2 and
RhO2 ML. Before assessing the magneto-optical effects, we
need to calculate the optical conductivity. In Fig. 4e, σR

xy dis-
plays a quantized behavior in the low-frequency limit, while
σR
xx (Fig. 4d) as well as the corresponding imaginary parts
σI
xx (Fig. 4f) and σI

xy (Fig. 4g) tend to be zero when ω → 0.
By plugging the optical conductivity into Eqs. 8, 9, and 12–
15, we confirm the existence of QTMO effects, that is, θK ≃
−π/2 and θF ≃ Cα in the low-frequency limit, as shown in
Figs. 4h,i. To measure the quantized magneto-optical effects,
the frequency of incident light should be much smaller than
the topologically nontrivial band gap Eg

31,46. The QTMO ef-
fects proposed in the RhO2 ML could be experimentally ob-
served if the frequency is below 3 THz (≃ 13 meV). The pow-
erful tool of time-domain THz spectroscopy is ready for ex-
ploring such kinds of quantized magneto-optical effects33–37.
Thus, the quantized Kerr rotation angle should be measur-

able over a whole range of finite frequencies that extend up

to the size of the nontrivial band gap (Fig. 4h).
Spectroscopic fingerprints of TMO effects. Unlike the

topological Hall effect, the TMO effect accommodates ad-

ditional information as it is a frequency-dependent quan-

tity. Thus, the fundamental question arises whether there

are characteristic features in the MO spectra that can dis-

tinguish the TMO effect from its trivial cousin. Inspired

by the MOS (Fig. 3i), we discover that the integrals of

σR
xy(ω), θK(ω), and θF(ω) are all proportional to the spin

chirality χijk(θ). As a consequence, for the TMO effect,

we propose the following three MO spectral integrals (SIs)

to identify the signatures of the complex spin topology in

the underlying spectra:

SI(1) =

∫ ∞

0+
σR
xy(ω)dω ≃ KRχijk(θ), (5)

SI(2) =

∫ ∞

0+
θK(ω)dω ≃ KKχijk(θ), (6)

SI(3) =

∫ ∞

0+
θF(ω)dω ≃ KFχijk(θ), (7)

where KR, KK, and KF are scaling constants. Consid-

ering as an example the strained γ-Fe0.5Mn0.5 system,

we demonstrate in Fig. 5a that the spectral integral SI(1)

changes drastically with the magnetic order and the un-

derlying spin topology. While this spectral integral follows

the finite scalar spin chirality in the noncoplanar antifer-

romagnetic state, i.e., SI(1) ∝ χijk(θ) ∝ cos θ sin2 θ, its

value relates instead to the magnetocrystalline anisotropy

in the collinear ferromagnetic state. Specifically, the

anisotropy function K0 + K1sin
2(φ) + K2sin

4(φ)48 with

φ = θ − 54.7◦ describes excellently the conventional MO

spectrum of the hexagonal ferromagnet49,50, which ex-

hibits no spin chirality. As they directly relate to the MO

conductivity, the spectral integrals SI(2) and SI(3) for the

Kerr and Faraday rotation angles reveal analogously in

Figs. 5b,c fundamentally distinct behaviors for collinear

and noncoplanar magnetic order. Therefore, we proclaim

that the different physical nature of the topological and

conventional MO effects manifests in specific hallmarks

in terms of the proposed spectral integrals, which can

thus be used to distinguish the two phenomena. Finally,

while Fig. 5 promotes tuning the magnetic order to iden-

tify the spectroscopic fingerprints, we emphasize that ap-

plying strain is another suitable means. If we apply ten-

sile or compressive strain, the TMO effect and the spectral

integrals change their signs in the noncoplanar antiferro-

magnet which is in sharp contrast to the situation for the

ferromagnetic state, where a sign change is purely acci-

dental.

Discussion

We discovered a fundamentally new type of light-matter in-
teraction that originates from the chirality of the underlying
complex spin texture of antiferromagnetic systems. As com-

a

b

c

S
I

S
I

S
I

FIG. 5. Spectroscopic hallmarks of the topological magneto-

optical effect. For the strained γ-Fe0.5Mn0.5 system with δ =
0.95, the magnetic order as encoded in θ imprints on the spectral

integrals of (a) the real part of the off-diagonal magneto-optical

conductivity, and on the spectral integrals of (b) Kerr and (c)

Faraday rotation angles. Solid circles and open squares repre-

sent the data for the chiral noncoplanar antiferromagnet and for

the collinear ferromagnetic state, respectively. In the latter case,

the magnetization changes with θ from the [001] to the [110] crys-

tallographic direction. Spin-orbit coupling is included in the fer-

romagnetic case, for which the resulting integrals are divided by

an overall factor of 10. The solid lines are fits of the obtained an-

gular dependence to the scalar spin chirality, whereas the dashed

lines are computed based on the magnetocrystalline anisotropy

function with hexagonal symmetry, K0+K1sin
2(φ)+K2sin

4(φ)
where φ = θ − 54.7◦, as the strain is applied along the [111] di-

rection of cubic lattice.
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pared to the century-old microscopic interpretation based on
the interplay of SOC and BES11–18, the predicted TMO and
QTMO effects mark a new class of solid-state phenomena
that root in the concurrence of symmetry, chirality, and topol-
ogy in magnetic materials. Thereby, we generalized the dc

charge response26,27 driven by noncoplanar magnetic or-

der to the realm of nonzero frequency, which was unex-

plored so far. Specifically, we predicted the emergence of
quantum topological Kerr effect with a quantized rotation

angle of nearly 90◦. The direct fingerprint of the complex
spin texture of chiral magnets on the coupling to polarized
light is thus significantly larger than in ferromagnetic materi-
als, even though there might be no net spontaneous magneti-
zation. Consequently, the proposed TMO and QTMO effects
could be used to reveal domains of different chirality in gen-
eral nc-AFMs. Although the topological light-matter interac-
tions that we uncovered originate from fundamentally distinct
physics, their manifestations in terms of changes of the po-
larization in reflected and transmitted light can be measured
similarly to their conventional analogs by readily available ex-
perimental techniques.

While we assumed a polar geometry at normal incidence
to predict novel types of chirality-driven magneto-optical ef-
fects, our conclusions are universal as they hold also for dif-
ferent measurement geometries. For example, in the case of
γ-FexMn1−x, the incident light propagates along the [111] di-
rection parallel to the direction of the fictitious magnetic field
due to finite scalar spin chirality. If the incident light deviates
slightly from this direction, the Kerr angle acquires an addi-
tional geometrical factor of cos(φi)/cos(φi ± φr)

47 that de-
pends on the light’s polarization ±, and includes the angles of
incidence φi and reflectance φr. Similarly, the Faraday angle
at oblique incidence is approximately equal to the original one
at normal incidence. The predicted topological light-matter
interactions are also active in both longitudinal and transver-
sal geometries, for which the plane of incidence are the zx
and xy planes (see Fig. 1), since they are also directly related
to nonvanishing magneto-optical conductivity σxy(ω). In the
case of the quantized topological magneto-optical phenom-
ena in KxRhO2, we studied explicitly the normal incidence
of light that propagates along the [0001] direction. Since the
long-wavelength and low-energy (λ ≫ l and ~ω ≪ Eg) pre-
dictions are independent of the angle of incidence46, the quan-
tization of the Kerr and Faraday rotation angles will be robust
even under oblique incidence.

In this work, we explored the microscopic origin of topo-
logical magneto-optical Kerr and Faraday phenomena, which
are linear in the electric field, as representative light-matter
interactions in chiral magnets. We anticipate that the scalar
spin chirality imprints analogously on higher-order magneto-
optical effects, including nonlinear Kerr (second-order in elec-
tric field) and Voigt phenomena (second-order in fictitious
magnetic field B), and magnetic dichroism for both linearly
and circularly X-ray polarized light (XMLD and XMCD). Our
work advances the understanding and potential use of light-
matter interactions in chiral magnets. Specifically, the dis-
covered quantized versions of topological Kerr and Faraday
effects are intimately linked to the quantized magneto-electric

response of topological magnetic systems, realizing exotic ax-
ion electrodynamics29,51. Therefore, we promote the QTMO
phenomena as an exciting platform to reveal and manipulate
axion physics by coupling polarized light to the noncopla-
nar spin structure in antiferromagnetic materials. Ultimately,
by exploring the coupling of polarized light to the spin pat-
tern of antiferromagnetic materials, we also establish texture-
driven magneto-optical effects as key physical phenomena in
the emerging field of topological antiferromagnetic spintron-
ics52.

Methods

Expressions for TMO and QTMO effects. The magneto-
optical Kerr and Faraday effects measure the different re-
sponse to left- and right-circularly polarized light that prop-
agates through a magnetic medium. Owing to this, the Kerr
and Faraday angles are universally defined as:

θK =
1

2

(

arg{Er
+} − arg{Er

−}
)

, (8)

θF =
1

2

(

arg{Et
+} − arg{Et

−}
)

, (9)

where Er,t
± = Er,t

x ± iEr,t
y are the left-circularly (−) and

right-circularly (+) polarized components of the reflected (r)
and transmitted (t) electric fields. Two distinct scenarios have
to be considered separately. Case (1): In topologically triv-
ial materials (e.g., γ-FexMn1−x), by solving the conventional

Maxwell’s equations with appropriate boundary conditions,
the complex Kerr angle in the polar geometry at normal in-
cidence is given by11–14,

θK + iǫK =
−σxy

σxx
√

1 + i(4π/ω)σxx
, (10)

where θK and ǫK are the Kerr rotation angle and ellipticity,
respectively. Similarly, the complex Faraday angle in the polar
geometry at normal incidence reads11–14,

θF + iǫF =
ωl

2c
(n+ − n−), (11)

where l is the thickness of the thin film, c is the speed of light
in vacuum, and n± = [1 + 4πi

ω (σxx ± iσxy)]
1/2 are the com-

plex refractive indices. Case (2): In the QTH insulators (e.g.,
K0.5RhO2), the Maxwell’s equations have to be modified by
the additional magnetoelectric term E·B29. For a QTH insula-
tor film with a thickness much shorter than the incoming light
wavelength, the outgoing electric fields are derived as:31,46

Er
x =

[

1− (1 + 4πσxx)
2 − (4πσxy)

2
]

A, (12)

Er
y = 8πσxyA, (13)

Et
x = 4(1 + 2πσxx)A, (14)

Et
y = Er

y, (15)

with A = 1/
[

(2 + 4πσxx)
2 + (4πσxy)

2
]

. Plugging Eqs. 12–
15 into Eqs. 8 and 9, we obtain the quantized Kerr and Fara-
day angles in the low-frequency limit (ω → 0), which can be
simply expressed by Eqs. 3 and 4.
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Tight-binding calculations. The Kondo lattice model ex-
pressed in Eq. 1 is applicable for both the 3D fcc lattice and
2D triangular lattices. For the 3D fcc lattice, the strain is de-
fined by δ = d′/d, where d′ and d refer to the distance be-
tween adjacent (111) planes in the strained and unstrained lat-
tices, respectively. The transfer integral within (between) the
(111) planes is given by tij = t (t′), where t′ = t/δ2 is scaled
with the strain (t′ = t implies no strain). An 8×8 matrix
representation of the Hamiltonian was constructed by intro-
ducing eight orthonormal basis states |iα〉 (i = {1, 2, 3, 4},
α = {↑, ↓}) that describes the interaction of itinerant electrons
with the local spin moment Si. Using Fourier transformations,
we transformed this matrix to a representation H(k) in mo-
mentum space, which was subsequently diagonalized at every
k-point to access the band structure and magneto-optical con-
ductivity.

First-principles calculations. The computational param-
eters of electronic structure: (1) γ-FexMn1−x. The self-
consistent calculations were performed within the full-
potential linearized augmented-plane-wave code FLEUR (see
www.flapw.de). Exchange and correlation effects were treated
in the generalized gradient approximation of the Perdew-
Burke-Ernzerhof (GGA-PBE) functional53. The virtual crys-
tal approximation was used to describe the disordered al-
loys by adapting the nuclear numbers under conservation of
charge neutrality. The lattice constant of fcc γ-FexMn1−x

was chosen as 3.63 Å40. A compressive or tensile strain,
δ = d′/d, was applied along the [111] direction, where d′

and d refer to the distance between adjacent (111) planes
in the strained and unstrained lattices. The Poisson effect
was accounted by the constant volume approximation. (2)
K0.5RhO2. The self-consistent calculations were performed
by the projector augmented wave code VASP54. The GGA-
PBE functional was used to treat exchange and correlation
effects53. The GGA+U scheme with the effective Coulomb
energy Ueff = U − J = 2.0 eV was applied for Rh 4d orbital
to account for its Coulomb correlation effect28. The experi-
mental lattice constants (a = 3.065 Å and c = 13.600 Å)55

were used. A slab model with a vacuum region more than 15
Å was used for RhO2 monolayer.

Using the WANNIER90 package56, maximally localized
Wannier functions were constructed based on the converged
electronic structure in order to evaluate the optical conductiv-
ity tensor on an ultra-dense mesh of k-points. For metallic
γ-FexMn1−x, the intraband contribution was considered by
adding the phenomenological Drude term12, σD = σ0/(1 −
iωτD), into the diagonal element of optical conductivity. The
Drude parameters (σ0 and τD) were obtained by linearly inter-
polating the experimental data of pure Fe (σ0 = 6.40 × 1015

s−1 and τD = 9.12 × 10−15 s)57 and pure Mn (σ0 = 4.00 ×
1015 s−1 and τD = 0.33× 10−15 s)58.

Data availability. The tight-binding code and the data that
support the findings of this study are available from the corre-
sponding authors on reasonable request.
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tre and RWTH Aachen University for providing computa-

tional resources under project jiff40.

Additional information

Supplementary Information accompanies this paper at
XXX.
Competing interests The authors declare no competing finan-
cial interests.


