000872595 001__ 872595
000872595 005__ 20220930130227.0
000872595 0247_ $$2doi$$a10.25534/TUPRINTS-00009478
000872595 0247_ $$2URN$$a 	urn:nbn:de:tuda-tuprints-94781
000872595 0247_ $$2URN$$aurn:nbn:de:tuda-tuprints-94781
000872595 0247_ $$2Handle$$a2128/24653
000872595 037__ $$aFZJ-2020-00093
000872595 041__ $$aEnglish
000872595 1001_ $$0P:(DE-Juel1)171604$$aKyrey, Tetyana$$b0$$eCorresponding author$$ufzj
000872595 245__ $$aInternal structure and dynamics of PNIPAM based microgels in bulk and adsorbed state at different internal crosslinker distributions$$f2016-12-01 - 2019-11-30
000872595 260__ $$aDarmstadt$$bTU Darmstadt$$c2019
000872595 300__ $$a135p.
000872595 3367_ $$2DataCite$$aOutput Types/Dissertation
000872595 3367_ $$2ORCID$$aDISSERTATION
000872595 3367_ $$2BibTeX$$aPHDTHESIS
000872595 3367_ $$02$$2EndNote$$aThesis
000872595 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1586176121_15239
000872595 3367_ $$2DRIVER$$adoctoralThesis
000872595 502__ $$aDissertation, TU Darmstadt, 2019$$bDissertation$$cTU Darmstadt$$d2019$$o2019-11-13
000872595 520__ $$aStimuli-responsive microgels are a unique class of polymer structures which can undergo a fast response to an external trigger such as light, temperature or pH. It provides a wide potential application spectrum in optical devices, smart surface coatings, emulsion stabilisation etc. The most prominent example of these microgels are poly(N-isopropylacrylamide)(PNIPAM) microgels.   During the last decades PNIPAM-based microgels were widely studied and serve nowadays as model systems for the investigation of the basic properties of microgels and the principles of supported transport of active substances, e.g. drug delivery. The responsive behaviour of the microgels is governed by the polymer network structure, i.e. the crosslinking of the polymer chains has a considerable influence on the physico-chemical and mechanical properties of the microgels. Especially the amount and the crosslinker distribution within a single microgel have a high relevance for the application as well as for the understanding of the microgel nature.   This thesis focuses on a detailed analysis of microgels in solution and at interfaces with scattering experiments. Neutron and X-ray scattering provide a unique insight into the structure and dynamics of microgels, especially at the interface with grazing incidence small angle neutron scattering and neutron spin-echo spectroscopy (GISANS and GINSES). New insights into the inner structure and dynamics have been gained with improved experimental conditions and data analysis.   This thesis is divided into the two main parts. In order to characterise the internal structure and dynamics of the PNIPAM microgels with respect to the crosslinker (N,N'-methylenebis(acrylamide), BIS) distribution, sophisticated analysis of the internal microgel (domain-like) structure and studies of its influence on the polymer dynamics in nanometer and nanosecond scales are presented in the first part of the thesis. In the context of smart polymer coatings, the influence of the confinement to the solid surface on the internal architecture and the thermoresponsiveness of the adsorbed PNIPAM microgels is investigated. It is shown that in contrast to the atomic force microscopy, the inhomogeneities of the polymer network of the adsorbed soft microgels can be achieved with surface sensitive neutron reflectometry and GISANS.  The second part of the thesis aims at the peculiarities of the scattering experiments of thin polymer layers under grazing incidence conditions. Simulation of the scattering signal within the Distorted Wave Born Approximation is presented in order to improve the analysis of the GINSES data and to simplify the initial planing and performance of the grazing incidence experiments.     The main impacts of this thesis are (i) an extended description of the complex internal structure, dynamics and the thermoresponsiveness of the PNIPAM microgel before and after adsorption onto a solid surface and (ii) demonstration the advantages of the investigation of the polymer systems at grazing incidence conditions in combination with numerical simulations.
000872595 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000872595 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000872595 588__ $$aDataset connected to DataCite
000872595 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000872595 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000872595 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000872595 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000872595 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000872595 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x2
000872595 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x3
000872595 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x4
000872595 773__ $$a10.25534/TUPRINTS-00009478
000872595 8564_ $$uhttps://tuprints.ulb.tu-darmstadt.de/id/eprint/9478
000872595 8564_ $$uhttps://juser.fz-juelich.de/record/872595/files/Dissertation_Kyrey_v2.pdf$$yOpenAccess
000872595 8564_ $$uhttps://juser.fz-juelich.de/record/872595/files/Dissertation_Kyrey_v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872595 909CO $$ooai:juser.fz-juelich.de:872595$$pVDB$$pVDB:MLZ$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
000872595 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171604$$aForschungszentrum Jülich$$b0$$kFZJ
000872595 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000872595 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000872595 9141_ $$y2020
000872595 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872595 915__ $$0LIC:(DE-HGF)CCBYSA4$$2HGFVOC$$aCreative Commons Attribution-ShareAlike CC BY-SA 4.0
000872595 920__ $$lyes
000872595 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000872595 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000872595 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000872595 980__ $$aphd
000872595 980__ $$aVDB
000872595 980__ $$aUNRESTRICTED
000872595 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000872595 980__ $$aI:(DE-588b)4597118-3
000872595 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000872595 9801_ $$aFullTexts