001     872604
005     20230815122845.0
024 7 _ |a 10.1128/mBio.02273-19
|2 doi
024 7 _ |a 2150-7511
|2 ISSN
024 7 _ |a 2161-2129
|2 ISSN
024 7 _ |a 2128/24907
|2 Handle
024 7 _ |a altmetric:75044301
|2 altmetric
024 7 _ |a pmid:32019787
|2 pmid
024 7 _ |a WOS:000518763400112
|2 WOS
037 _ _ |a FZJ-2020-00097
082 _ _ |a 570
100 1 _ |a Wiechert, Johanna
|0 P:(DE-Juel1)171113
|b 0
|u fzj
245 _ _ |a Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of Corynebacterium glutamicum as a Model
260 _ _ |a Washington, DC
|c 2020
|b American Society for Microbiology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1590501256_26042
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lsr2-like nucleoid-associated proteins play an important role as xenogeneic silencers (XS) of horizontally acquired genomic regions in actinobacteria. In this study, we systematically analyzed the in vivo constraints underlying silencing and counter-silencing of the Lsr2-like protein CgpS in Corynebacterium glutamicum. Genome-wide analysis revealed binding of CgpS to regions featuring a distinct drop in GC profile close to the transcription start site (TSS) but also identified an overrepresented motif with multiple A/T steps at the nucleation site of the nucleoprotein complex. Binding of specific transcription factors (TFs) may oppose XS activity, leading to counter-silencing. Following a synthetic counter-silencing approach, target gene activation was realized by inserting operator sites of an effector-responsive TF within various CgpS target promoters, resulting in increased promoter activity upon TF binding. Analysis of reporter constructs revealed maximal counter-silencing when the TF operator site was inserted at the position of maximal CgpS coverage. This principle was implemented in a synthetic toggle switch, which features a robust and reversible response to effector availability, highlighting the potential for biotechnological applications. Together, our results provide comprehensive insights into how Lsr2 silencing and counter-silencing shape evolutionary network expansion in this medically and biotechnologically relevant bacterial phylum.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|x 0
|f POF III
536 _ _ |a DFG project 218313974 - Spontane Induktion kryptischer Prophagen in Populationen der Modellorganismen Corynebacterium glutamicum und Escherichia coli
|0 G:(GEPRIS)218313974
|c 218313974
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Filipchyk, Andrei
|0 P:(DE-Juel1)179244
|b 1
|u fzj
700 1 _ |a Hünnefeld, Max
|0 P:(DE-Juel1)165889
|b 2
|u fzj
700 1 _ |a Gätgens, Cornelia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brehm, Jannis
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Heermann, Ralf
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Frunzke, Julia
|0 P:(DE-Juel1)138503
|b 6
|e Corresponding author
773 _ _ |a 10.1128/mBio.02273-19
|g Vol. 11, no. 1, p. e02273-19/mbio/11/1/mBio.02273-19.atom
|0 PERI:(DE-600)2557172-2
|n 1
|p e02273-19/mbio/11/1/mBio.02273-19.atom
|t mBio
|v 11
|y 2020
|x 2150-7511
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/872604/files/Invoice_94265439.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/872604/files/mBio-2020-Wiechert-e02273-19.full.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/872604/files/Invoice_94265439.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/872604/files/mBio-2020-Wiechert-e02273-19.full.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872604
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171113
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165889
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)138503
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MBIO : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MBIO : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21