000872607 001__ 872607
000872607 005__ 20240711113854.0
000872607 0247_ $$2doi$$a10.1177/0021998318771149
000872607 0247_ $$2ISSN$$a0021-9983
000872607 0247_ $$2ISSN$$a1530-793X
000872607 0247_ $$2WOS$$aWOS:000452293900003
000872607 037__ $$aFZJ-2020-00100
000872607 082__ $$a670
000872607 1001_ $$00000-0002-4986-4198$$aGietl, H.$$b0
000872607 245__ $$aTextile preforms for tungsten fibre-reinforced composites
000872607 260__ $$aLondon$$bSage$$c2018
000872607 3367_ $$2DRIVER$$aarticle
000872607 3367_ $$2DataCite$$aOutput Types/Journal article
000872607 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580805933_4614
000872607 3367_ $$2BibTeX$$aARTICLE
000872607 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872607 3367_ $$00$$2EndNote$$aJournal Article
000872607 520__ $$aDemanding high heat flux applications, as for example plasma-facing components of future nuclear fusion devices, ask for the development of advanced materials. For such components, copper alloys are currently regarded as heat sink materials while monolithic tungsten is foreseen as directly plasma-facing material. However, the combination of these materials in one component is problematic since they exhibit different thermomechanical characteristics and their optimum operating temperatures do not overlap. In this context, an improvement can be achieved by applying composite materials that make use of drawn tungsten fibres as reinforcement. For the manufacturing processes of these composites, suitable tungsten fibre preform production methods are needed. In the following, we will show that tungsten fibres can be processed to suitable preforms by means of well-established textile techniques as studies regarding the production of planar weavings (wire distances of 90–271 µm), circular braidings (multilayered braidings with braiding angle of 60° and 12°) as well as multifilamentary yarns (15 tungsten filaments with 16 µm diameter) are presented. With such different textile preforms tungsten fibre-reinforced tungsten (Wf/W) with a density of over 99% and pore-free tungsten fibre-reinforced copper Wf/Cu composites were produced which proves their applicability with respect to a composite material production processes.
000872607 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000872607 588__ $$aDataset connected to CrossRef
000872607 7001_ $$0P:(DE-Juel1)166336$$aMüller, A v$$b1
000872607 7001_ $$0P:(DE-Juel1)2594$$aCoenen, Jan Willem$$b2$$eCorresponding author
000872607 7001_ $$0P:(DE-HGF)0$$aDecius, M.$$b3
000872607 7001_ $$0P:(DE-HGF)0$$aEwert, D.$$b4
000872607 7001_ $$0P:(DE-HGF)0$$aHöschen, T.$$b5
000872607 7001_ $$00000-0002-9022-8855$$aHuber, Ph$$b6
000872607 7001_ $$0P:(DE-HGF)0$$aMilwich, M.$$b7
000872607 7001_ $$0P:(DE-HGF)0$$aRiesch, J.$$b8
000872607 7001_ $$0P:(DE-HGF)0$$aNeu, R.$$b9
000872607 773__ $$0PERI:(DE-600)2081924-9$$a10.1177/0021998318771149$$gVol. 52, no. 28, p. 3875 - 3884$$n28$$p3875 - 3884$$tJournal of composite materials$$v52$$x1530-793X$$y2018
000872607 8564_ $$uhttps://juser.fz-juelich.de/record/872607/files/0021998318771149.pdf$$yRestricted
000872607 8564_ $$uhttps://juser.fz-juelich.de/record/872607/files/0021998318771149.pdf?subformat=pdfa$$xpdfa$$yRestricted
000872607 909CO $$ooai:juser.fz-juelich.de:872607$$pVDB
000872607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166336$$aForschungszentrum Jülich$$b1$$kFZJ
000872607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b2$$kFZJ
000872607 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000872607 9141_ $$y2019
000872607 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz
000872607 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000872607 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872607 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COMPOS MATER : 2017
000872607 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872607 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872607 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872607 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872607 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872607 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872607 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872607 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872607 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872607 920__ $$lyes
000872607 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000872607 980__ $$ajournal
000872607 980__ $$aVDB
000872607 980__ $$aI:(DE-Juel1)IEK-4-20101013
000872607 980__ $$aUNRESTRICTED
000872607 981__ $$aI:(DE-Juel1)IFN-1-20101013