000872607 001__ 872607 000872607 005__ 20240711113854.0 000872607 0247_ $$2doi$$a10.1177/0021998318771149 000872607 0247_ $$2ISSN$$a0021-9983 000872607 0247_ $$2ISSN$$a1530-793X 000872607 0247_ $$2WOS$$aWOS:000452293900003 000872607 037__ $$aFZJ-2020-00100 000872607 082__ $$a670 000872607 1001_ $$00000-0002-4986-4198$$aGietl, H.$$b0 000872607 245__ $$aTextile preforms for tungsten fibre-reinforced composites 000872607 260__ $$aLondon$$bSage$$c2018 000872607 3367_ $$2DRIVER$$aarticle 000872607 3367_ $$2DataCite$$aOutput Types/Journal article 000872607 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580805933_4614 000872607 3367_ $$2BibTeX$$aARTICLE 000872607 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000872607 3367_ $$00$$2EndNote$$aJournal Article 000872607 520__ $$aDemanding high heat flux applications, as for example plasma-facing components of future nuclear fusion devices, ask for the development of advanced materials. For such components, copper alloys are currently regarded as heat sink materials while monolithic tungsten is foreseen as directly plasma-facing material. However, the combination of these materials in one component is problematic since they exhibit different thermomechanical characteristics and their optimum operating temperatures do not overlap. In this context, an improvement can be achieved by applying composite materials that make use of drawn tungsten fibres as reinforcement. For the manufacturing processes of these composites, suitable tungsten fibre preform production methods are needed. In the following, we will show that tungsten fibres can be processed to suitable preforms by means of well-established textile techniques as studies regarding the production of planar weavings (wire distances of 90–271 µm), circular braidings (multilayered braidings with braiding angle of 60° and 12°) as well as multifilamentary yarns (15 tungsten filaments with 16 µm diameter) are presented. With such different textile preforms tungsten fibre-reinforced tungsten (Wf/W) with a density of over 99% and pore-free tungsten fibre-reinforced copper Wf/Cu composites were produced which proves their applicability with respect to a composite material production processes. 000872607 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0 000872607 588__ $$aDataset connected to CrossRef 000872607 7001_ $$0P:(DE-Juel1)166336$$aMüller, A v$$b1 000872607 7001_ $$0P:(DE-Juel1)2594$$aCoenen, Jan Willem$$b2$$eCorresponding author 000872607 7001_ $$0P:(DE-HGF)0$$aDecius, M.$$b3 000872607 7001_ $$0P:(DE-HGF)0$$aEwert, D.$$b4 000872607 7001_ $$0P:(DE-HGF)0$$aHöschen, T.$$b5 000872607 7001_ $$00000-0002-9022-8855$$aHuber, Ph$$b6 000872607 7001_ $$0P:(DE-HGF)0$$aMilwich, M.$$b7 000872607 7001_ $$0P:(DE-HGF)0$$aRiesch, J.$$b8 000872607 7001_ $$0P:(DE-HGF)0$$aNeu, R.$$b9 000872607 773__ $$0PERI:(DE-600)2081924-9$$a10.1177/0021998318771149$$gVol. 52, no. 28, p. 3875 - 3884$$n28$$p3875 - 3884$$tJournal of composite materials$$v52$$x1530-793X$$y2018 000872607 8564_ $$uhttps://juser.fz-juelich.de/record/872607/files/0021998318771149.pdf$$yRestricted 000872607 8564_ $$uhttps://juser.fz-juelich.de/record/872607/files/0021998318771149.pdf?subformat=pdfa$$xpdfa$$yRestricted 000872607 909CO $$ooai:juser.fz-juelich.de:872607$$pVDB 000872607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166336$$aForschungszentrum Jülich$$b1$$kFZJ 000872607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b2$$kFZJ 000872607 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0 000872607 9141_ $$y2019 000872607 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz 000872607 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000872607 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000872607 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COMPOS MATER : 2017 000872607 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000872607 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000872607 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000872607 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000872607 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000872607 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000872607 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000872607 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000872607 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000872607 920__ $$lyes 000872607 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000872607 980__ $$ajournal 000872607 980__ $$aVDB 000872607 980__ $$aI:(DE-Juel1)IEK-4-20101013 000872607 980__ $$aUNRESTRICTED 000872607 981__ $$aI:(DE-Juel1)IFN-1-20101013