000872608 001__ 872608
000872608 005__ 20240711113855.0
000872608 0247_ $$2doi$$a10.1088/1741-4326/aa9a05
000872608 0247_ $$2ISSN$$a0029-5515
000872608 0247_ $$2ISSN$$a1741-4326
000872608 0247_ $$2Handle$$a2128/23819
000872608 0247_ $$2altmetric$$aaltmetric:31285795
000872608 0247_ $$2WOS$$aWOS:000419346000003
000872608 037__ $$aFZJ-2020-00101
000872608 082__ $$a620
000872608 1001_ $$00000-0003-0427-8184$$aKrieger, K.$$b0
000872608 245__ $$aExperiments on transient melting of tungsten by ELMs in ASDEX Upgrade
000872608 260__ $$aVienna$$bIAEA$$c2018
000872608 3367_ $$2DRIVER$$aarticle
000872608 3367_ $$2DataCite$$aOutput Types/Journal article
000872608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1578647590_2394
000872608 3367_ $$2BibTeX$$aARTICLE
000872608 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872608 3367_ $$00$$2EndNote$$aJournal Article
000872608 520__ $$aRepetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98–9 1496–9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78–84; Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60–74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.
000872608 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000872608 588__ $$aDataset connected to CrossRef
000872608 7001_ $$0P:(DE-HGF)0$$aBalden, M.$$b1
000872608 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b2$$eCorresponding author
000872608 7001_ $$00000-0003-1601-2973$$aLaggner, F.$$b3
000872608 7001_ $$0P:(DE-HGF)0$$aMatthews, G. F.$$b4
000872608 7001_ $$0P:(DE-HGF)0$$aNille, D.$$b5
000872608 7001_ $$0P:(DE-HGF)0$$aRohde, V.$$b6
000872608 7001_ $$0P:(DE-HGF)0$$aSieglin, B.$$b7
000872608 7001_ $$0P:(DE-HGF)0$$aGiannone, L.$$b8
000872608 7001_ $$0P:(DE-Juel1)167536$$aGöths, B.$$b9
000872608 7001_ $$0P:(DE-Juel1)159396$$aHerrmann, A.$$b10
000872608 7001_ $$0P:(DE-HGF)0$$ade Marne, P.$$b11
000872608 7001_ $$0P:(DE-HGF)0$$aPitts, R. A.$$b12
000872608 7001_ $$0P:(DE-HGF)0$$aPotzel, S.$$b13
000872608 7001_ $$0P:(DE-HGF)0$$aVondracek, P.$$b14
000872608 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aa9a05$$gVol. 58, no. 2, p. 026024 -$$n2$$p026024 -$$tNuclear fusion$$v58$$x1741-4326$$y2018
000872608 8564_ $$uhttps://juser.fz-juelich.de/record/872608/files/Krieger_2018_Nucl._Fusion_58_026024.pdf$$yRestricted
000872608 8564_ $$uhttps://juser.fz-juelich.de/record/872608/files/07e93ad75a91152359104c166b96a74cbecb.pdf$$yPublished on 2018-01-04. Available in OpenAccess from 2019-01-04.
000872608 8564_ $$uhttps://juser.fz-juelich.de/record/872608/files/Krieger_2018_Nucl._Fusion_58_026024.pdf?subformat=pdfa$$xpdfa$$yRestricted
000872608 8564_ $$uhttps://juser.fz-juelich.de/record/872608/files/07e93ad75a91152359104c166b96a74cbecb.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-01-04. Available in OpenAccess from 2019-01-04.
000872608 909CO $$ooai:juser.fz-juelich.de:872608$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b2$$kFZJ
000872608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167536$$aForschungszentrum Jülich$$b9$$kFZJ
000872608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159396$$aForschungszentrum Jülich$$b10$$kFZJ
000872608 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000872608 9141_ $$y2019
000872608 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872608 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872608 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000872608 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2017
000872608 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872608 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872608 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872608 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872608 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872608 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872608 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000872608 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000872608 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872608 920__ $$lyes
000872608 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000872608 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000872608 9801_ $$aFullTexts
000872608 980__ $$ajournal
000872608 980__ $$aVDB
000872608 980__ $$aUNRESTRICTED
000872608 980__ $$aI:(DE-Juel1)IEK-4-20101013
000872608 980__ $$aI:(DE-Juel1)IEK-1-20101013
000872608 981__ $$aI:(DE-Juel1)IFN-1-20101013
000872608 981__ $$aI:(DE-Juel1)IMD-2-20101013