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Phase change memory materials: Rationalizing the dominance of Ge/Sb/Te alloys
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Rewritable optical storage is dominated by alloys of a small number of elements, overwhelmingly Ge, Sb,
and Te. For over 30 years, Ge/Sb/Te alloys in the composition range (GeTe)1−x (Sb2Te3)x (0 � x � 1) have
been the materials of choice in commercial devices: all have metastable rock-salt structures that change little
over decades at archival temperatures, and all contain vacancies (cavities). The special status of Ge/Sb/Te
alloys arises from the close similarity of their valence orbitals as measured by the orbital radial moments, so
that bonds are stronger than in other combinations of elements of groups 14–16 with appropriate valences.
The orbital similarity arises from the irregular changes in atomic orbitals and properties as the atomic number
increases (“secondary periodicity”). Jones showed [P. R. Soc. London, Ser. A 147, 396 (1934)] that the simple
cubic structure of (metallic) Bi (valence configuration 6s26p3) is unstable to a distortion to a (semimetallic)
rhombohedral structure. This picture can be adapted to Ge/Sb/Te alloys to explain the metastable structure of
the above family of compounds where vacancies almost always occur next to Te atoms, which form one sublattice
of the rock-salt structure. The disorder in the Ge/Sb/vacancy sublattice is not random.
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I. INTRODUCTION

Phase change materials (PCMs) dominate the world of
rewritable optical storage media, including the digital versatile
disk (DVD-RW) and the Blu-ray Disc (BD-RE), and are
leading candidates for future nonvolatile computer memories,
such as PC-RAM. Nanosized bits in a thin polycrystalline
layer are switched reversibly and extremely rapidly between
amorphous (a) and crystalline (c) states, which can be identi-
fied by measuring the resistivity or optical reflectivity. Ovshin-
sky [1] showed that this process could be induced by an
electric field in materials containing elements of groups 13–
16, particularly Te and As, and the search for materials that
crystallize rapidly at high temperatures while retaining data
for many years at room temperature has focused on narrow
gap semiconductors (NGSs) containing these elements. Com-
pounds containing Te [2] and Sb have always been favorites:
amorphous Te films crystallize spontaneously above 0 ◦C and
a-Sb likewise at higher temperatures, so that these elements
must be stabilized against premature crystallization by added
components. The identification of materials with satisfactory
properties for crystallization and amorphization proved to be
difficult.

Chen et al. [3] showed that laser-induced crystallization
occurred in films of Te in 100 ns and in GeTe [to the face-
centered cubic (fcc) form] in less than 30 ns with good data
retention. Te1−xGex films and the stoichiometric compounds
Sb2Se3, Sb2Se, and Sb2Te3 could be crystallized with laser
pulses of less than 1 µs, but GeSe and GeSe2 required
much longer crystallization times. Popular compounds con-
taining Te include Sb/Te alloys near the eutectic composi-
tion Sb0.7Te0.3 with small amounts of other elements [Ag,
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In in Ag/In/Sb/Te (AIST)], Ge in GeST, and the pseudobi-
nary materials (GeTe)1−x(Sb2Te3)x [4]. The phase diagrams
of Ge2Sb2Te5 (GST, x = 1/3), Ge1Sb2Te4 (x = 1/2), and
GeSb4Te7 (x = 2/3) [5], related Ge/Bi/Te compounds [6],
and other homologs [7] have been determined. The crys-
talline structures comprise layers, up to 66 in the unit cell
of GeSb8Te13 (x = 4/5). Recent years have seen focus on
compounds containing indium and Ge, Sb, and Te, including
InGeTe2 [8], In3SbTe2 [9–11], and In2GeTe3 [11]. These com-
pounds often share the rock-salt (RS) structure of Ge/Sb/Te
compounds.

Yamada and co-workers [12,13] reviewed the development
of PCM using Ge/Sb/Te alloys, particularly those in the
above family, and noted that they provided “the first practical
phase change materials and still today (2012) remain the
standard material” [14]. The crystalline (Fm3̄m) phases show
wide composition tolerance and are metastable over many
years at archival temperatures, and the amorphous forms
resist crystallization at room temperature. The structure of
the metastable form, particularly the presence of vacancies
(cavities) is crucial. Yamada [15] proposed that sites of the
anion sublattice were occupied by Te atoms, and the cation
sublattice randomly by Ge and Sb atoms and vacancies.

X-ray diffraction measurements on 17 alloys [16] showed
that the fraction of vacancies in the cation sublattice varies
approximately as x/(1 + 2x) (20% for GST). Annealing of the
metastable structures at sufficiently high temperatures results
in more stable layered structures (trigonal [5]) that comprise,
in the case of GST, stacks of nine layers (-Te-Sb-Te-Ge-
Te-Ge-Te-Sb-Te-) separated by a gap [17] arising from the
ordering of vacancies. The analysis of Matsunaga et al. [18]
showed mixed Sb-Ge layers, with Sb and Ge being replaced
by “Sb-rich” and “Ge-rich,” respectively. Recent scanning
tunneling electron microscopy (STEM) measurements [19]
on GST show that different annealing conditions lead to
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different occupations of Ge and Sb in the cation planes with
Sb enrichment in the planes closest to the gaps and to different
distributions of stacking sequences of 7, 9, and 11 planes.

There have been countless studies of phase change prop-
erties in alloys of elements of groups 13–16, particularly,
those near the diagonal in the periodic table between B and
Po. A few such elements—particularly Ge, Sb, and Te—
have dominated practical PCM applications. Work on opti-
cal memory has focused on “GeTe-rich” materials, such as
the Blu-ray Disc material Ge8Sb2Te11 (x = 1/9) [20], and
recent developments also involve these elements. Research on
“superlattices” with much improved power requirements has
focused on alternating nanoscale layers of GeTe and Sb2Te3

in thin films [19,21, and references therein]. Crystallization
speedup was obtained by improving the thermal stability of
a-Sb2Te3 by alloying with scandium (Sc0.2Sb2Te3 [22]) and
by confining Sb samples to extremely small volumes [23].
Why have these elements, particularly Ge/Sb/Te alloys near
the GeTe-Sb2Te3 tie line, dominated the discussion?

Coordinate schemes have proven to be valuable in distin-
guishing between structural types in binary NGS [24] and
PCM [25] and are discussed in Sec. II. We calculate and
discuss the valence orbitals and related properties in Ge, Sb,
Te, and other atoms in groups 13–16 and show that the orbitals
vary irregularly with changing atomic number (“secondary
periodicity”). In Sec. III, we discuss the structural instabilities
associated with partially occupied nearly free-electron (NFE)
bands and the role played by the average number of valence
electrons. In Sec. IV, we summarize experimental information
and simulations concerning crystallization of a-GST [26–30]
also from the perspective of Ostwald’s step rule, where mul-
tistage processes can aid the transition from the metastable
liquid to the most stable (trigonal) structure. We discuss
the results and summarize our findings in Sec. V. Bonding
concepts in these and other materials have been reviewed
elsewhere [31].

II. STRUCTURES, COORDINATE SCHEMES, VALENCE

ATOMIC ORBITALS

A. Coordinate schemes

Trends in structures and other properties of elements and
compounds can often be clarified if plotted with appropriate
variables (coordinates), examples being the rows and columns
of the periodic table. Elements to the left are metals, whereas
most others are covalently bonded semiconductors and insula-
tors with a tendency to metallic behavior as the atomic number
Z increases. The group 14 elements, for example, change with
increasing Z from insulating diamond through semiconduct-
ing Si and Ge to metallic forms of Sn and Pb. Pauling [32]
discussed the properties of atoms in terms of their location
in the periodic table and defined their electronegativities in
terms of bond energies of small molecules. Mulliken [33]
defined electronegativity in purely atomic terms as the average
of ionization energy and electron affinity. The present paper
follows the latter in focusing on the constituent atoms.

Discussions of structures of binary (AB) compounds often
focus on the differences between the coordinates of A and
B. Phillips and van Vechten [34] used the ionic and covalent

contributions to the average gap in octet compounds AN B8−N ,
and St. John and Bloch [35] plotted differences in elec-
tronegativity (or ionicity) against the average hybridization
in these materials. Both schemes could differentiate between
structures with different coordination numbers, and Schiferl
[36] used a similar approach to study AN B10−N compounds
with average valence five, denoted 〈5〉 below.

Coordinate plots can be made using distances correspond-
ing to the maxima of valence orbital functions for an atomic
model potential [35], the crossing points of atomic pseu-
dopotentials [37], or their valence orbitals [38]. Littlewood
[39] showed that more ionic 14–16 compounds have the RS
structure, whereas less polar bonding leads to rhombohedral
structures and large covalent gaps to the orthorhombic struc-
ture. These coordinate schemes were reviewed by Littlewood
[24], who studied structural types in many NGSs with octet
and AN B10−N compositions, many of which show only small
deviations from perfect sixfold or eightfold coordination.

PCMs often comprise three or even four elements, but
schemes for binary compounds can be adapted by replacing
the multielement compound by an equivalent binary mate-
rial. For example, Ge and Sb atoms in crystalline Ge/Sb/Te
materials occupy one sublattice of an RS structure, and a
stoichiometrically averaged coordinate can be derived [25].
PCM materials with favorable properties are generally found
in the region with small ionicity and weak hybridization. This
picture can be extended using the coordinates of electrons
shared and transferred between domains surrounding the in-
dividual nuclei with a third coordinate for particular physical
properties [40].

B. Atomic orbitals, density functional calculations

Valence atomic orbitals determine the “size” and elec-
tronegativity of an atom, and the relationships among orbital
overlap, hybridization, and bond strength go back to the early
days of the quantum theory of molecules [32,41,42]. The bond
strength, in particular, is largest if the orbital overlap is a
maximum. We focus here on trends in the s- and p-valence
orbitals in groups 13–16 elements obtained from density
functional (DF) calculations [43] using the Perdew-Burke-
Ernzerhof [44] approximation to the exchange-correlation
energy. The all-electron (semirelativistic) calculations were
carried out using a modified form of the program of Hamann
[45]. The atomiclike mass-velocity and Darwin terms are
treated explicitly, and spin-orbit coupling effects are included
by perturbation theory [46].

C. Orbital trends and secondary periodicity

Biron noted over 100 years ago [47] that many chemical
and physical properties exhibited secondary periodicity, a
zigzag behavior superimposed on a smooth trend down a
column of the periodic table. He showed that this complicates
the prediction of properties by interpolation, examples being
the heats of formation of oxides and chlorides of groups
15–17 and the fact that the group 15 elements P and Sb are
pentavalent, whereas N, As, and Bi are trivalent. Anomalously
large ionization energies are evident in fourth row compounds
[48] and in the s-d excitation energies and the s2-s1 ionization
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FIG. 1. Radial orbital functions rRnl ; (n = 2–6) for s- (solid
curves) and p- (dashed curves) valence electrons in group 14 ele-
ments. Secondary periodicity is particularly evident in the p orbitals.

energies in group 15 ions [49]. Secondary periodicity [48,50]
is associated with the stronger and shorter bonds that are
consequences of the incomplete screening by the 3d electrons
of the additional nuclear change in elements beyond Ga (Z =

31, “d-block contraction”) and by the 4 f shell in elements
beyond Tl (Z = 81). The latter effect had been observed in
1925 in crystallographic measurements of oxides and termed
“lanthanide contraction” [51].

Most PCMs comprise elements of groups 13–16, and al-
most all are near the diagonal in the periodic table between B
and Po. The valence orbitals of group 14 elements are shown
in Fig. 1, and those of groups 13, 15, and 16 are shown in
Fig. SF1– 3 of the Supplemental Material [52]. The p orbitals
in Si and Ge are strikingly similar and differ from those of
Sn and Pb, which are again very similar. Pairwise similarity
is a reflection of secondary periodicity and is evident in all
four groups. The trends can be quantified in several ways, in-
cluding the energy eigenvalues εnl , where eigenvalue splitting
between the s- and the p-valence orbitals is one measure of
the tendency of the atomic orbitals to form sp hybrids and
directed bonds [24]. These eigenvalues are given for groups
13–16 in Table I and Fig. SF4 of the Supplemental Material
[52], but their interpretation requires care. The splitting in
C, for example, is larger than in Si, Ge, or Sn, although sp

hybridization is strongest in C. The radii of the maxima in
these orbitals or those derived from an atomic model potential
have also been used [25,35,39].

We focus here on the first radial moment of the orbitals
or the normalized expectation value of r with respect to the
orbitals,

〈r〉nl =

∫

dr r|rRnl |
2

/ ∫

dr |rRnl |
2, (1)
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FIG. 2. First radial moments [Eq. (1)] for s- (solid curves) and p-
(dashed curves) valence electrons in elements of groups 13–16.

which probes an orbital over its entire range, including the
tail. The results are provided in Fig. 2 and Table I. For Ge,
Sb, and Te, the values of 〈r〉nl are 20–30% greater than the
radii where Rnl (r) is a maximum [53]. Orbital comparisons
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FIG. 3. Radial orbital functions rRnl for s- (full curves) and p-
(dashed curves) valence electrons in Ge (green), Sb (red), and Te
(blue).
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TABLE I. Moments 〈r〉0 and 〈r〉1 (Å) and 〈r−1〉0 and
〈r−1〉1 (Å−1), and the corresponding DF eigenvalues ε0 and
ε1 (hartree) for s- and p-valence orbitals of atoms of groups 13–16.

Group Element 〈r〉0 〈r〉1 〈r−1〉0 〈r−1〉1 ε0 ε1

B 1.033 1.218 1.390 1.125 −0.347 −0.133
Al 1.346 1.824 1.000 0.735 −0.285 −0.100

13 Ga 1.240 1.812 1.055 0.725 −0.329 −0.095
In 1.381 1.980 0.931 0.649 −0.302 −0.093
Tl 1.311 2.039 0.973 0.627 −0.351 −0.087

C 0.832 0.953 1.740 1.451 −0.506 −0.194
Si 1.145 1.479 1.186 0.914 −0.398 −0.150

14 Ge 1.120 1.534 1.172 0.855 −0.431 −0.143
Sn 1.265 1.728 1.021 0.745 −0.385 −0.132
Pb 1.223 1.787 1.046 0.711 −0.443 −0.129

N 0.698 0.786 2.083 1.772 −0.686 −0.264
P 1.003 1.256 1.363 1.084 −0.514 −0.203

15 As 1.026 1.352 1.284 0.972 −0.533 −0.191
Sb 1.178 1.545 1.098 0.832 −0.472 −0.178
Bi 1.150 1.619 1.116 0.785 −0.532 −0.168

O 0.603 0.670 2.423 2.089 −0.881 −0.332
S 0.897 1.096 1.535 1.247 −0.634 −0.258

16 Se 0.950 1.219 1.393 1.083 −0.635 −0.240
Te 1.104 1.414 1.177 0.912 −0.553 −0.219
Po 1.088 1.494 1.184 0.852 −0.622 −0.207

weighted towards small values of r are provided by 〈r−1〉nl ,
which is defined analogously and is sometimes used in the
generation of pseudopotentials. Values of this moment are
given in Table I for completeness.

The first radial moment provides a consistent picture of
trends of atoms in these groups, and secondary periodicity
is most pronounced in group 13 elements and more evident
in s orbitals than in p orbitals. The structural consequences
are immediate. The contraction of the 4s and 4p orbitals in
Ga is so large that they are more compact than the 3s and 3p

orbitals in Al (Fig. SF1 of the Supplemental Material [52]),
and the 3�−

u state is shorter in the dimer Ga2 than in Al2 [54].
The 3p orbital in Si and the 4p orbital in Ge (and the positions
of their maxima) are very similar, and the 4s orbital in Ge is
even more compact than the 3s orbital in Si. The secondary
periodicity evident in the orbitals and moments in group 14
elements is consistent with the trend in the measured lattice
constants with the diamond structure (C: 3.567 Å, Si: 5.431 Å,
Ge: 5.646 Å, and gray Sn: 6.489 Å) and other properties.

The maxima in the 2s and 2p functions (Fig. SF5 of the
Supplemental Material [52]) and the corresponding moments
(Table I) are similar in all first row elements where there are no
core p electrons to reduce the interaction of the 2p electrons
with the nucleus, and sp hybridization is stronger. This results
in C in stronger and more flexible (single, double, and triple)
bonds than in other group 14 elements where the p functions
are significantly more diffuse than the s functions, and single
bonds are favored [55]. Relativistic effects [50] in elements
with Z > 81 lead to contraction of the orbitals of the in-
nermost electrons and by orthogonalization to more compact
s-valence orbitals with lower-energy eigenvalues and weaker
sp hybridization. This is reflected in the cubic structures of
PbS, PbSe, and PbTe.

The valence orbital functions for Ge, Sb, and Te (Fig. 3)
are remarkably similar for elements with a large range of Z: 32
(Ge)–52 (Te). Orbitals become more compact on moving from
left to right in the periodic table, counteracting the tendency
to more extensive orbitals as the row number or principal
quantum number increases. The radial moments give a direct
measure of the electronegativity of the elements, and we
note that the Pauling electronegativities are almost identical
in Ge (2.01), Sb (2.05), and Te (2.1) [56]. Also shown as
Supplemental Material are the valence orbitals of the first-row
elements B–F (Fig. SF5 [52]) and the component elements of
AIST and Ge (Fig. SF6 [52]).

III. STRUCTURAL CHANGES IN GST—INGREDIENTS OF

A MODEL

The most stable (trigonal) structures of Ge/Sb/Te alloys
have never been used in commercial PCM, and the metastable
rock-salt structure is viewed as the “key” to their superior
phase change properties [14]. Particularly important are the
wide ranges of compositions covered by the tie line and that
small departures from this line also lead to cubic structures.

Vacancies in GST are structural features, not defects [57],
and their number maximizes the occupation of bonding p

orbitals [25,58], whose overlap is greatest for bond angles
near 90◦ [41]. Cubic structures are often favored in such cases,
although the crystal structures in Sb and P [59] and related
clusters [60–62] suggest treating this assumption with care
[63]. DF calculations indicated that cubic (p-bonding) struc-
tures are favored over chalcopyrite (sp3-hybridized) structures
in Te-based ternary PCM if the total occupancy of valence
electrons Nsp > 4.1 [58]. We use the NFE approximation
of Peierls [64] to discuss the structures of PCM and their
distortions

A. NFE model

Bloch [65] showed that the eigenfunctions of an electron
in a periodic potential V (r) can be written

ψk(r) = uk(r) exp i(k · r), (2)

where uk(r) has the periodicity of V (r). If V vanishes [FE
model], the eigenvalues are Ek(r) = h̄2k2/2m, where k = |k|.
The reciprocal lattice points for a linear chain of periodicity
a are the values in k space where exp(ikx) has periodicity a,
i.e., g = nπ/a, where n is an integer. Peierls [64] showed that
a gap in the band structure of |2Vg| occurs at k = g/2 (Fig. 4),
where Vg is the Fourier transform of V .

A periodic three-dimensional potential V (r) can be ex-
panded as a Fourier series,

V (r) =
∑

g

Vg exp i(g · r), (3)

with

Vg =
1

V

∫

dr V (r) exp −i(g · r). (4)

Brillouin [66] showed how to construct polyhedral zones in
two and three dimensions using planes bisecting each g vector,
and the smallest is the first Brillouin zone (BZ). Energy bands
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FIG. 4. Nearly free-electron model of Peierls [64].

for larger values of k can be folded into this BZ to give the
electronic band structure in the reduced zone scheme. If the
structure has several atoms in the unit cell, Vg is replaced by
VgSg where the structure factor,

Sg =
∑

ri

exp −i(g · ri ), (5)

and ri are the coordinates of the atoms in the unit cell of
volume V [67]. Vg vanishes if Sg is zero, and the corresponding
surfaces should not be counted as zone boundaries. This
construction in the extended zone scheme was introduced by
Jones [68], and we return to it below.

The FE and NFE models provide an excellent basis for
studying metals and semiconductors. Mott and Jones [69], pp.
125–128] noted over 80 years ago that the conduction-band
widths measured in x-ray emission from many metals was
close to the FE bandwidths calculated for the appropriate
electron densities, and this is true for many semiconductors.
Figure 5 shows FE bands for structures with the translational
symmetry of the fcc lattice (includes the diamond and RS
structures), together with the degeneracies of the bands and
the Fermi energy EF if there are eight (diamond) and ten (RS)
valence electrons in the unit cell. The large degeneracies of
the bands near EF in the latter suggest that a material with
ten valence electrons will have several bands near EF derived
from the FE bands along � and Q. The lower degeneracies
and smaller value of EF in the diamond structure imply fewer
band crossings.

B. Jones zones in extended k space, “Peierls distortion”

A simple extension of the NFE model suggests a mecha-
nism for structural distortions [70]. If we displace, for exam-
ple, every second atom in a linear chain by the same amount,
we double the size of the unit cell and can introduce gaps in
the energy eigenvalue spectrum at half of the distance to the
boundary of the original BZ [±π/(2a)] in Fig. 4. If this gap is
at or near EF , as in the case of a half-filled band, the distortion
will be accompanied by a lower total energy. This mechanism
in a one-dimensional (1D) system is often referred to as the
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FIG. 5. Free-electron bands for structures with the translational
periodicity of fcc lattices. X : 100, Ŵ: 000, L: 1
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units of (2π/a), where a is the lattice constant]. Energies in units
of (2π/a)2. Also shown are the band degeneracies and the Fermi
energies corresponding to eight (blue, dashed) and ten (red, solid)
valence electrons in the unit cell.

Peierls distortion [70], but it was applied much earlier by
Jones to the three-dimensional (3D) structure and electronic
properties of the semimetal Bi [68,69,71] and other materials.

If there are two or more electrons in the unit cell, the first
band (and BZ) are occupied, and it is convenient to discuss
the bands near EF using the extended zone scheme. The group
15 elements As, Sb, and Bi have five valence electrons per
atom and are metallic in the simple cubic (SC) structure,
which can be represented (Fig. 6) as two fcc lattices displaced
by half of the body diagonal. Two independent distortions, a

FIG. 6. SC structure (green, dashed) represented as two fcc
lattices (red, black) displaced by half of the body diagonal of the
latter.
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FIG. 7. (a) Fourth Brillouin zone and (b) Jones zone of structures
with the fcc translational structure. (c) Fifth Brillouin zone of the fcc
structure and (d) Jones zone of the bismuth (A7) structure.

relative displacement u of the fcc lattices and a trigonal shear
(angle α) along the diagonal lead to the A7 (rhombohedral)
structure found in these three elements [72]. The RS and
rhombohedral structures of GeTe are related in the same way.
In this picture, the A7 structure of Bi is simply a consequence
of the instability inherent in a SC structure with half-filled
bands. The distortion, which decreases in the order As →

Sb → Bi as sp hybridization weakens, yields a structure with
short and long bonds that can be associated with the softening
of the transverse optical phonon in the (111) direction.

The structures of As, Sb, Bi, and GeTe have two atoms and
ten valence electrons in the unit cell so that, at least, five BZs
are occupied. The fifth BZ has a complex form [Fig. 7(c)],
and Jones adopted an alternative zone bounded by planes
corresponding to large values of Sg. The Jones zones (JZ)
for ten electrons [trigonal, Fig. 7(d)] has six planes arising
from reciprocal lattice vectors of the form [110] and six from
vectors related to [221]. It is much simpler than the fifth BZ,
but it has the same volume and contains five states per atom
[73]. The small number of Vg and the presence of parallel zone
faces give rise to pairs of bands that are nearly parallel in a
significant volume of k space and give rise to characteristic
peaks and shoulders in the optical properties.

The calculations of Jones [68] and Mott and Jones [69]
focus on the Landau-Peierls diamagnetism and consider nei-
ther Pauli paramagnetism nor spin-orbit coupling, but they
explained the rhombohedral structure of Bi, which results in
an overlap between valence and conduction bands. The elec-
tron and hole pockets in the Fermi surface are consistent with
the high diamagnetism and low (semimetallic) conductivity

of Bi, and this applies to As and Sb, and to GeTe where
the rhombohedral form is a narrow-gap semiconductor. The
form of the FE bands near EF suggests that valence-band
occupancies close to ten will also have overlapping bands and
similar (semimetallic) properties.

The Jones zone construction also provides insight into the
electronic structure and optical properties of the semiconduc-
tors Si and Ge [31,74]. The JZ for the diamond structure
[Fig. 7(b)] is again much simpler than the fourth BZ [Fig. 7(a)]
and has the same volume. The approach has been applied to
other 〈5〉 materials, including SnTe [75,76]. The use of the
NFE (or pseudopotential) model in extended k space has been
applied by Littlewood [24], and references therein] to many
octet (AN B8−N ) and ten-electron (AN B10−N ) compounds. Nev-
ertheless, the model of Jones has largely been ignored in the
PCM and NGS fields where structural changes are usually
attributed to the 1D Peierls distortion, where the mapping
of a 3D problem onto one dimension requires simplifying
assumptions about the interactions between p orbitals [24,77].

Mott and Jones ([69], p. 167) focused on the lowering
of the total energy: “When this is the case, the greater the
energy gaps over the zone boundaries the lower will be
the total energy.... In this way, then, we can see a simple
reason for the relative displacement of the two face-centered
lattices; it represents merely the tendency of the total energy to
diminish as far as possible.” The band-structure calculations
of As, Sb, and Bi by Cohen et al. [78] showed a valence
band of predominantly p-bonding character separated from
p-antibonding bands that are mostly unoccupied. Mixing of
bonding and antibonding characters and sp-hybridization oc-
cur, and the location of the few holes in the uppermost valence
band and the few electrons in lowest conduction band are
determined by these mixings. Both the internal displacement
and the trigonal shear are needed to explain the semimetallic
behavior. It was confirmed much later that the former led
to a very narrow-gap semiconductor, and the latter drives a
transition to a semimetal by a mechanism “consistent with
the Jones-Peierls model” [79]. The main features of the band
structure are a hole pocket near T and an electron pocket
near L where both T and L are derived from the point L for
FE bands for ten electrons in the fcc unit cell (Fig. 5). The
presence of two types of carrier means that the temperature
dependence of the conductivity will be different from that in
a metal. Conduction- and valence-band extremities in GeTe,
SnTe, PbS, PbSe, and PbTe are also at or near L [80,81].

C. Peierls distortions in disordered materials

Jones and Peierls described structural instabilities using
arguments based on the NFE theory of electronic structure in
a crystal, but disordered systems show related features and
are important in the context of crystallization. Tight-binding
calculations in real space for systems containing elements of
groups 15–17 [82] show changes in coordination numbers and
the presence of alternating short and long bonds that indicate
that Peierls distortions occur in liquid P and As. Density
functional/molecular dynamics (DF/MD) simulations of ℓ-
GeTe show a high level of alternating chemical order and
provide evidence for a Peierls distortion just above the melting
point [83] with a minimum in the electronic DOS near EF .
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FIG. 8. Calculated electronic density of states (DOS) of amor-
phous [(am), red], crystalline [(cr), blue], and liquid [(liq), green]
GST at 900 K [84]. The vertical dashed line at E = 0 marks the
Fermi energy. Amorphous and crystalline calculations used a 2 ×

2 × 2 Monkhorst-Pack mesh, and the liquid DOS is based on five
snapshots with one k point (k = 0).

Figure 8 shows the electronic DOS from density functional
calculations in crystalline, amorphous, and liquid GST [84]. A
small band gap (∼0.2 eV) is present in the first two phases,
and there is a minimum at EF in the liquid. The measured band
gaps at room temperature for c- and a-GST are 0.74 ± 0.5 and
∼0.5 eV, respectively [85].

D. Crystallization: Ostwald’s step rule

GST is a supercooled liquid at 600 K, and the history of
metastable structure formation in liquids goes back to the 19th
century and the work of Ostwald [86], who summarized his
observations of crystallization with his Stufensatz (“step rule”
or “rule of stages”): For a metastable (or unstable) liquid that
can crystallize in several forms, the first stage of nucleation is
to the metastable form nearest in free energy not to the most
stable form. The ordering of free energies could be determined
by considering phases of variable concentration or structure.
A refinement by Stranski and Totomanow [87] focused on the
metastable form that is separated from the initial state by the
lowest free-energy barrier. This opens the prospect of finding
alternative multistep paths to the most stable form involving
a variety of structures (polymorphs), and various models have
been used to study crystallization in the presence of multiple
metastable intermediate phases [88], and references therein].

Ostwald’s step rule and the Stranski-Totomanov extension
often hold, but well-documented counterexamples [89,90]
show that neither is rigorous, and this was clear already
to Ostwald. However, van Santen [91] applied irreversible

thermodynamics to show that a multiple step reaction leads
to a lower entropy production than the direct reaction, and
simulations of ten Wolde and Frenkel [92] showed that path-
ways for homogeneous nucleation could differ markedly from
classical nucleation theory and follow a microscopic version
of Ostwald’s rule. The presence of a metastable liquid-liquid
critical point lowers the free-energy barrier and increases
the nucleation rate during the crystallization of biological
molecules [93] and multicomponent systems [94]. Femtosec-
ond x-ray diffraction studies of the PCM AIST and Ge15Sb85

show the presence of liquid-liquid phase transitions [95].

IV. CRYSTALLIZATION IN GST

We now summarize the structural changes taking place
during crystallization of a-GST and show that they can be
rationalized using a model based on the above.

A. Results of simulations and experiment

Density functional simulations [84,96,97] of amorphous
and liquid (ℓ)-GeTe and GST show the presence of vacancies
and ABAB rings (A: Ge, Sb and B: Te) in all phases. In a-
GST, the distributions of Te-Sb-Te and Te-Ge-Te bond angles
show pronounced peaks around 90◦, and the dihedral angles
for Ge-Te and Sb-Te bonds show maxima around 0, 90◦,
and 180◦ that also arise in cubic structures. Simulations of
crystallization of a-GST [26–29] showed that ABAB rings
reorient on a nanosecond timescale to the metastable RS
structure [15] with Te atoms on the anion sublattice and an
apparently disordered arrangement of Ge, Sb, and vacancies
on the cation sublattice. The vibration frequencies of GST
(typically 3 THz [84]) allow several thousand vibrations on
the scale of nanoseconds, and energy minimization leads to a
substantial rearrangement of the ABAB rings and a dramatic
reduction in the number of “wrong bonds” (Ge-Ge, Ge-Sb,
Sb-Sb, and Te-Te). The ordering of Te atoms in the cation
sublattice is rapid, but slower ordering of the other elements
and vacancies occurs. The overall picture is motion of Ge
and Sb atoms away from vacancies, which accumulate in
the neighborhood of Te atoms. The distribution of vacancies
around Te atoms found in the simulations agrees well with the
results of 125Te nuclear magnetic resonance studies [98].

Figure 9 shows a snapshot of the ordered structure of
GST in Ref. [27]. The atoms in the anion lattice show clear
signs of segregation, so that their distribution is definitely not
random. The time dependence of the associated partial pair
distribution functions and coordination numbers confirm this
(Ref. [27], including the Supplemental Material [28]). STEM
measurements and DF calculations [99] show that further
annealing results in vacancy segregation into specific (111)
planes of the trigonal structure discussed above.

B. Model

The main driving force for structural changes in GST is
the energy lowering accompanying the occupation of bonding
orbitals, and the number of vacancies in the metastable RS
phases of the PCM (GeTe)1−x(Sb2Te3)x is such that that
all bonding p orbitals are occupied [58]. It is common to
associate p3 configurations with cubic structures, and a SC
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FIG. 9. Structure of (metastable) crystalline GST [28]. Orange:
Te, gray: Ge, and purple: Sb. Ordering in the Te layers is almost
complete. Segregation in the other layers is evident.

structure, viewed as two fcc lattices displaced along the cubic
diagonal (Fig. 6), is unstable against a combined trigonal shear
and rhombohedral distortion. This occurs in the elements As,
Sb, and Bi, and GeTe is rhombohedral at room temperature
and has a RS structure at high temperatures. These materials
have exactly five valence electrons (s2 p3) per atom, and Jones
[68] explained the structure and semimetallic properties of Bi
using a NFE model in the extended zone scheme with ten
electrons (five per atom) filling a zone constructed in k space.
The number of valence electrons in the pseudobinary PCM
mentioned above is close to five (4.75 in Ge1Sb4Te7, x =

2/3; 4.91 in Ge8Sb2Te11, x = 1/9).
The s- and p-valence orbitals in Ge, Sb, and Te atoms

are very similar, and the principle of maximum overlapping
implies that the energy lowering in GST will be greater than
in other combinations of atoms of the same groups. The
similarity is a direct consequence of secondary periodicity,
where the d-block contraction of the valence orbitals of Ge
balances the orbital contraction found in Sb (group 15) and Te
(group 16) to the right of Ge in the periodic table.

These observations allow us to consider a model for the
crystallization of amorphous GST, where the structure has
many cubic features. If we focus on the cubic aspects alone,
assume that the orbitals of Ge, Sb, and Te are the same, not
just similar, and that the GST systems have an average of
five valence electrons (s2 p3) per site, including vacancies,
we can adapt the arguments applied to Bi by Jones [68] to
rationalize the rock-salt metastable structures found in both
experiments and simulations of Ge/Sb/Te alloys. The struc-
tural changes must also reflect the composition of the material
and the different electronic configurations and valences of the
components, Ge 3s23p2, Sb 4s24p3, Te 4s24p4, and vacancies
s0 p0. The most stable average configuration (s2 p3) can be
maintained if Sb and, particularly, Ge atoms move away from
vacancies, which accumulate near Te atoms. These trends are
observed in the simulations where the lighter Ge atoms are
also more mobile than Sb, and very few vacancies have Ge
or Sb atoms as neighbors in the ordered metastable structure
[27]. The atoms make up, at least, half of the total number

in all Ge/Sb/Te alloys near the tie line, and attainment of an
average configuration of s2 p3 with these constraints will favor
a Te sublattice.

The formation of a metastable state well above the energy
of the most stable (trigonal) structure is an example of Ost-
wald’s step rule in a multicomponent system. The free energy
is lowered by the distortion to the metastable RS structure
with the most rapid kinetics. The accompanying process to
the most stable structure is much slower, but the first stages
of order—the segregation of Ge and Sb atoms—are evident in
DF/MD simulations. It will be interesting to see whether the
lack of randomness can be confirmed experimentally.

V. DISCUSSION AND CONCLUDING REMARKS

The requirements of PCM are satisfied to varying extents
by many compounds of elements of groups 14–16, but almost
all commercial products use alloys containing Ge, Sb, and/or
Te. The time-limiting step in the read-write cycle is crystal-
lization of amorphous bits, which is driven by the lowering of
energy on bond formation. This is greatest when the overlap
of the valence orbitals is maximized, and this occurs in Ge,
Sb, and Te (see Sec. II C); Sb and Te are adjacent in the
periodic table, and the d-block contraction in Ge counteracts
the expansion usually associated with elements in a column to
the left. Structural consequences of secondary periodicity are
evident in the chalcogenides of Ge: GeTe is rhombohedral,
whereas GeS and GeSe are orthorhombic [39], and GeTe
crystallizes much more readily than GeSe and GeSe2 [3].

Unlike the distance where a valence orbital has its maxi-
mum value, radial moments (Fig. 2, Table I) contain informa-
tion over the whole range and are used here to characterize the
orbitals. Choosing elements with comparable radial moments
results in materials with weak sp hybridization and small
charge transfer between the atoms. Secondary periodicity is
also evident in eigenvalue plots (Fig. SF4 of the Supplemental
Material [52]), but variations with Z are less pronounced than
in the orbital moments (Fig. 2), which also provide a guide to
finding alternatives to Ge, Sb, and Te as PCMs.

A good match to Ge is provided by Si, but the sp splitting
is smaller in Si and hybridization is more pronounced. Se
and As, like Ge, are subject to the d-block contraction, and
the overlap of their orbitals with those of Ge is less than for
Te and Sb, respectively. The short half-life of all isotopes
eliminates Po as a replacement for Te, and Bi shares with
Po and other elements with Z > 80 a pronounced relativistic
contraction of the s orbital, weak sp hybridization, and a
tendency to favor cubic over rhombohedral structures. The
replacement of a fraction of Sb by Bi or Ge by Sn may
still be favorable. The instability towards crystallization of
pure amorphous Te and Sb means that additional components
are essential. One suggestion was to develop multielement
substances with atoms of different sizes and chemical bonding
states, noting that “GST, AIST, and GeST are all multielement
substances in which Sb and Te (which have large atomic radii)
and Ge, Ag, and In (which have small atomic radii) are mixed
together” [4]. The orbital functions of Ag and In in AIST are,
however, significantly more extended than those of Sb and
Te (Fig. SF6 of the Supplemental Material [52]). This means
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that the present analysis would require modification for the
compounds of In with Ge, Sb, and/or Te mentioned above.

There have been numerous attempts to rationalize the
behavior of PCM and other narrow-gap semiconductors com-
prising elements near the diagonal of the periodic table be-
tween B and Po. Pauling and others refer to these elements
as metalloids, which have “...properties intermediate between
those of metals and those of nonmetals” ([100], p. 612), and
Littlewood noted: “To understand the structural properties of
narrow-gap semiconductors, it is necessary to consider them
as borderline cases in the broad trend from covalent to metallic
binding” ([24], p. 232).

It has been proposed that the function of PCM reflects
drastic changes in the nature of the chemical bond in the
two phases: “resonant bonding” in the crystal [101], transient
three-center bonds mediated by lone pair electrons [102], or
“metavalent bonding” in “incipient metals” [103]. Alignment
of p orbitals in the ordered structure has been invoked as
a requirement for large optical contrast in PCM [104]. The
identification of particular bonding mechanisms is not always
straightforward; any molecular orbital (“delocalized”) func-
tion can be transformed into a valence-bond (“localized”)
function ([31], and references therein), and a wave function
can be projected in a variety of ways to give atomic, ionic, or
other components [105].

We have focused on the relationship between the structure
and the number of valence electrons of the component atoms,
the extent of their orbitals as characterized by the radial mo-
ments, and the NFE model of band theory in the extended zone
scheme as well as the composition of the materials. All aspects

are important so that the focus is broader than requiring an
average count of three p electrons per site [25,58]. The band
(reciprocal space) and bond (real-space) perspectives provide
complementary information about structure and bonding. In
the context of 〈5〉 materials, Cohen et al. concluded that the
band picture provided a “deeper basis for understanding” [78],
and the electronic structure has been emphasized here. The
NFE approach is the basis of the structural distortion models
developed by Jones and by Peierls, and it is close to the
density functional formalism [43] used in most simulations
of PCMs. It shows that dramatic changes in electronic and
structural properties can result without invoking different
bonding mechanisms. In the case of bulk Al and Si, for
example, the different number of valence electrons leads to
the difference between a fcc metal and a semiconductor with
a diamond structure and a gap of over 1 eV. Large changes can
occur in Ge/Sb/Te materials as well. The actual mechanism

of bonding in these materials in their different phases is
a lowering of kinetic energy due to wave-function overlap
[43,106] with only differences in detail.
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