000872622 001__ 872622 000872622 005__ 20210130004236.0 000872622 0247_ $$2Handle$$a2128/23824 000872622 037__ $$aFZJ-2020-00114 000872622 1001_ $$0P:(DE-Juel1)169856$$aMorgenstern, Laura$$b0$$eCorresponding author$$ufzj 000872622 1112_ $$aPlatform for Advanced Scientific Computing$$cZurich$$d2019-06-12 - 2019-06-14$$gPASC19$$wSwitzerland 000872622 245__ $$aTasking Meets GPUs:Fighting Deadlocks and Other Monsters 000872622 260__ $$c2019 000872622 3367_ $$033$$2EndNote$$aConference Paper 000872622 3367_ $$2BibTeX$$aINPROCEEDINGS 000872622 3367_ $$2DRIVER$$aconferenceObject 000872622 3367_ $$2ORCID$$aCONFERENCE_POSTER 000872622 3367_ $$2DataCite$$aOutput Types/Conference Poster 000872622 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1578902033_31746$$xAfter Call 000872622 520__ $$aTask parallelism is omnipresent these days; whether in data mining or machine learning, for matrix factorization or even molecular dynamics. Despite the successof task parallelism on CPUs, there is currently no performant way to exploit task parallelism of synchronization-critical algorithms on GPUs.Hence, our goal is the development of a task-based programming model to exploit fine-grained task parallelism on heterogeneous hardware. 000872622 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000872622 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1 000872622 7001_ $$0P:(DE-Juel1)157750$$aBeckmann, Andreas$$b1$$ufzj 000872622 7001_ $$0P:(DE-Juel1)132152$$aKabadshow, Ivo$$b2$$ufzj 000872622 7001_ $$0P:(DE-HGF)0$$aWerner -> Werner, Matthias$$b3 000872622 8564_ $$uhttps://juser.fz-juelich.de/record/872622/files/PASC2019.pdf$$yOpenAccess 000872622 8564_ $$uhttps://juser.fz-juelich.de/record/872622/files/PASC2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000872622 909CO $$ooai:juser.fz-juelich.de:872622$$pdriver$$pVDB$$popen_access$$popenaire 000872622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169856$$aForschungszentrum Jülich$$b0$$kFZJ 000872622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157750$$aForschungszentrum Jülich$$b1$$kFZJ 000872622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132152$$aForschungszentrum Jülich$$b2$$kFZJ 000872622 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000872622 9141_ $$y2019 000872622 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000872622 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000872622 9801_ $$aFullTexts 000872622 980__ $$aposter 000872622 980__ $$aVDB 000872622 980__ $$aUNRESTRICTED 000872622 980__ $$aI:(DE-Juel1)JSC-20090406