001 | 872622 | ||
005 | 20210130004236.0 | ||
024 | 7 | _ | |a 2128/23824 |2 Handle |
037 | _ | _ | |a FZJ-2020-00114 |
100 | 1 | _ | |a Morgenstern, Laura |0 P:(DE-Juel1)169856 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a Platform for Advanced Scientific Computing |g PASC19 |c Zurich |d 2019-06-12 - 2019-06-14 |w Switzerland |
245 | _ | _ | |a Tasking Meets GPUs:Fighting Deadlocks and Other Monsters |
260 | _ | _ | |c 2019 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1578902033_31746 |2 PUB:(DE-HGF) |x After Call |
520 | _ | _ | |a Task parallelism is omnipresent these days; whether in data mining or machine learning, for matrix factorization or even molecular dynamics. Despite the successof task parallelism on CPUs, there is currently no performant way to exploit task parallelism of synchronization-critical algorithms on GPUs.Hence, our goal is the development of a task-based programming model to exploit fine-grained task parallelism on heterogeneous hardware. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |x 1 |c PHD-NO-GRANT-20170405 |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |
700 | 1 | _ | |a Beckmann, Andreas |0 P:(DE-Juel1)157750 |b 1 |u fzj |
700 | 1 | _ | |a Kabadshow, Ivo |0 P:(DE-Juel1)132152 |b 2 |u fzj |
700 | 1 | _ | |a Werner -> Werner, Matthias |0 P:(DE-HGF)0 |b 3 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/872622/files/PASC2019.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/872622/files/PASC2019.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:872622 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)169856 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157750 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132152 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|