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Use Case Requirements

Fast Multipole Method for molecular dynamics:
1. Expand particles on lowest level into

) M2M L2L
multipole moments ) )

2. Transfer multipole moments upwards M2L

3. Translate multipole moments into R
local moments

4. Transfer local moments downwards

5. Translate local moments to particles on lowest level

6. Evaluate near field interactions

Motivation

Task parallelism is omnipresent these days; whether in
data mining or machine learning, for matrix factoriza-
tion or even molecular dynamics. Despite the success
of task parallelism on CPUs, there is currently no
performant way to exploit task parallelism of
synchronization-critical algorithms on GPUs.
Hence, our goal is the development of a task-based
programming model to exploit fine-grained task
parallelism on heterogeneous hardware.

© Correctness
- Mechanism for mutual exclusion

© Scalability
- Fine-grained task parallelism
- Dynamic load balancing

© Portability
- Uniform code path for CPU and GPU

Uniform Tasking for CPUs and GPUs... Performance Portability

© Diverse GPU programming approaches, e.g. CUDA, HIP, OpenCL, SYCL

I new task I other task

1 1 © Our requirements for programming approach:
1. Strong subset of C++11

taskfactory load balancer scheduler .

_ 2. Tasking features

m l 3. Maturity and sustainability
_ E—— 4. Portability between GPU vendors

dispatcher [ aghagd © Intermediate solution: Use CUDA and forget about 4. (for now).

T queues

See [1].

Mutual Exclusion

© Problem: CUDA doesn't flass Mutex
prOVide a mutex __1nline device__ void lock()
© Heavily dependent on use case  {
© Assumption for our use case: while (atomicCAS(&mutex, 0, 1) != 0)
threads in a warp never N —threadfence();
compete for the same lock _’inline device__ void unlock()
© Implement spin-lock based mutex {
by means of atomic operations __threadfence();
© Take weak memory cosistency atomicExch(&mutex, 0); @\
Into account by means of
memory fencing [2] int mutex = 0;
}s

... Requires a Uniform Machine Model

To bridge the gap between CPU and GPU regarding machine and programming
model, we view warps as SIMD-units that execute SIMD-tasks. Moreover, we use
persistent threads [3] to emulate the classical CPU threads on the GPU to support
fine-grained task-parallelism. Each persistent thread acts as producer and con-
sumer of tasks; meaning that each persistent thread contributes to scheduling
and dependency resolution. Currently, all persistent threads access a global task

queue concurrently. Thread safety is assured via spin-lock based mutexes.
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Dynamic Memory Allocation

In our current tasking model dynamic, fine-grained task-parallelism requires
plenty of small dynamic memory allocations. Using the built-in CUDA-allocator, this
leads to a heavy loss in performance. Due to this, we use ScatterAlloc [4] as
alternative allocator that supports dynamic memory allocations on

massively parallel architectures. Furthermore, we work on an approach

that uses static memory allocation only.
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First Performance Results
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