Tasking Meets GPUs:
Fighting Deadlocks and Other Monsters

TECHNISCHE UNIVERSITAT L. Morgenstern'4, A. Beckmann?, I. Kabadshow?, M. Werner'
CHEMNITZ 'Operating Systems Group, Chemnitz University of Technology

2Jiilich Supercomputing Centre, Forschungszentrum Jiilich GmbH

Use Case Requirements

Fast Multipole Method for molecular dynamics:
1. Expand particles on lowest level into

) M2M L2L
multipole moments))

2. Transfer multipole moments upwards M2L

3. Translate multipole moments into R
local moments

4. Transfer local moments downwards

5. Translate local moments to particles on lowest level

6. Evaluate near field interactions

Motivation

Task parallelism is omnipresent these days; whether in
data mining or machine learning, for matrix factoriza-
tion or even molecular dynamics. Despite the success
of task parallelism on CPUs, there is currently no
performant way to exploit task parallelism of
synchronization-critical algorithms on GPUs.
Hence, our goal is the development of a task-based
programming model to exploit fine-grained task
parallelism on heterogeneous hardware.

© Correctness
- Mechanism for mutual exclusion

© Scalability
- Fine-grained task parallelism
- Dynamic load balancing

© Portability
- Uniform code path for CPU and GPU

Uniform Tasking for CPUs and GPUs... Performance Portability

© Diverse GPU programming approaches, e.g. CUDA, HIP, OpenCL, SYCL

I new task I other task

1 1 © Our requirements for programming approach:
1. Strong subset of C++11

taskfactory load balancer scheduler .

_ 2. Tasking features

m l 3. Maturity and sustainability
_ E—— 4. Portability between GPU vendors

dispatcher [aghagd © Intermediate solution: Use CUDA and forget about 4. (for now).

T queues

See [1].

Mutual Exclusion

© Problem: CUDA doesn't flass Mutex
prOVide a mutex __1nline device__ void lock()
© Heavily dependent on use case {
© Assumption for our use case: while (atomicCAS(&mutex, 0, 1) != 0)
threads in a warp never N —threadfence();
compete for the same lock _’inline device__ void unlock()
© Implement spin-lock based mutex {
by means of atomic operations __threadfence();
© Take weak memory cosistency atomicExch(&mutex, 0); @\
Into account by means of
memory fencing [2] int mutex = 0;
}s

... Requires a Uniform Machine Model

To bridge the gap between CPU and GPU regarding machine and programming
model, we view warps as SIMD-units that execute SIMD-tasks. Moreover, we use
persistent threads [3] to emulate the classical CPU threads on the GPU to support
fine-grained task-parallelism. Each persistent thread acts as producer and con-
sumer of tasks; meaning that each persistent thread contributes to scheduling
and dependency resolution. Currently, all persistent threads access a global task

queue concurrently. Thread safety is assured via spin-lock based mutexes.
CPU

“

OO

4

Many SMT-Threads

run On L3 Cache
UL

GPU

Global Memory

Dynamic Memory Allocation

In our current tasking model dynamic, fine-grained task-parallelism requires
plenty of small dynamic memory allocations. Using the built-in CUDA-allocator, this
leads to a heavy loss in performance. Due to this, we use ScatterAlloc [4] as
alternative allocator that supports dynamic memory allocations on

massively parallel architectures. Furthermore, we work on an approach

that uses static memory allocation only.

" Streami Streami Streami Streami
Many Persistent Thread Blocks ayeaming ayeaming aeaming ueaming

} } } } } } } } run on Shared Memory Shared Memory Shared Memory Shared Memory
ﬁ

FPU || FPU || FPU || FPU FPU || FPU || FPU || FPU FPU || FPU || FPU || FPU FPU || FPU || FPU || FPU

FPU || FPU || FPU || FPU FPU || FPU || FPU || FPU FPU || FPU || FPU || FPU FPU || FPU || FPU || FPU

First Performance Results

105 L L

T T TTTIT0 T T TTTTTT T T TTTTT0 T T TTTIT0 T T TTTIT0 T T TTT1 eMeasurements: Thread_block Merge taSk_
e - 1024 threads per thread block local priority based FMM
2 o3 - P100 (56 SMs) - 56 thread blocks queues and
= -\V/100 (80 SMs) — 80 thread blocks GPU-tasking
= -
2 o Global queue only —
& - No work load to measure overhead S
© Conclusion: _
10_1 L1 11111l | L1 111111 | L1 11111l | L1 1 1111l | L1 111111 | L1 1 11111 | L1 1111l B Overhead to enqueue/dequeue -
10° 101 10° 10° 10¢ 10° 10° atask is constant
#Tasks 08/201 9 11/201 9
oo References
J U L I c H 1] D. Haensel. A C++ based MPI-enabled Tasking Framework to Efficiently Parallelize Fast Multipole Methods for Molecular Dynamics. PhD Thesis, TU Dresden, 2018.
2] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema, D. Poetzl, T. Sorensen and J. Wickerson. GPU Concurrency: Weak Behaviours and Programming Assumptions. SIGPLAN Not. 50,4 (March 2015), pp. 577-591.
Forschungszentrum 3] K. Gupta, J. A. Stuart and J. D. Owens. A study of Persistent Threads style GPU programming for GPGPU workloads. 2012 Innovative Parallel Computing (InPar), San Jose, CA, 2012, pp. 1-14.
4] M. Steinberger, M. Kenzel, B. Kainz and D. Schmalstieg. ScatterAlloc: Massively Parallel Dynamic Memory Allocation for the GPU. In Proceedings of inPar 2012, San Jose, USA.

