TECHNISCHE UNIVERSITAT J

CHEMNITZ

JULICH

Forschungszentrum

NUMA-Awareness as a Plug-in

L. Morgenstern*?, D. Haensel', A. Beckmann?, I. Kabadshow!
IJulich Supercomputing Centre, Forschungszentrum Jiilich
’Operating Systems Group, Chemnitz University of Technology

Motivation

Molecular dynamics (MD) has become a vital research method in biochemistry and materials science. GROMACS aims do develop a flexible and unified tool-box in the field of MD simulations. In
MD, the fast multipole method (FMM) is used to compute all pairwise long-range interactions between N particles in time O(N). To tackle exascale, MD applications - as well as several other HPC
applications - have to target strong scaling. To meet the according requirements such as synchronization- and latency-awareness, software needs to adopt to specific hardware properties such as
caching and non-uniform memory access (NUMA). This poster shows how we added NUMA-awareness to our C++ tasking framework for fine-grained parallelism with an FMM as use case. How-
ever, the poster has an emphasis on separation of concerns through software architecture since the representation of NUMA in software is not only relevant for the FMM but should be reusable by
similar applications.

Fast Multipole Method NUMA-Awareness Tasking Framework

NumaT I ThreadT, NumaT, ExecutorT ‘
FMMHandle Numal Numar, StealingT TaskingHandle
e
K ] ¢ T‘
T NumaT
NumaT Resources .
ThreadingWrapper
FMMTreeHandle y
NumaNode !
)
i
Core
ValueT, NumaT NumaT, QueueT NumaT
OctreeStorageDense $ Executor Stdimpl
ProcessingUnit
Workflow: Work stealing is a load-balancing approach for task- Goal: support synchronization- and latency-critical
1. Generate octree through hierarchical based applications. In NUMA-systems the overhead applications via a low-overhead tasking framework.
space decomposition of work stealing depends on the location of a thread Requirements:
2. Expand particles on lowest level into relative to the location of the task it attempts to © Sustainability. Beyond the project's lifetime.
multipole moments steal. To analyze the tradeoff between load- © Separation of concerns. Don't bother chemists
3. M2M: Transfer multipole moments upwards balancing and NUMA-awareness, we developed and biologists with dirty hardware details. And,
4. M2L: Translate multipole moments into three work stealing policies: Arbitrary NUMA-nodes don't bother computer scientists with chemistry;-)
local moments (ANN), Prefer local NUMA-node (PNN) and Local Main ideas:
5. L2L: Transfer local moments downwards NUMA-node only (NNO). © Static data-flow dispatching
6. Translate local moments to particles on S OANN PN © Ready-to-execute-tasks
O s . , - S = L © Typed priority queues
7. bvaluate neaipicil =Rt RS M > M i E Implementation based on language-inherent C++
. NNO features such as std::thread and template meta
0 0 programming only. No OpenMP, no OpenACC, no
N — - #pragma at all.
Data locality is furthermore assured by placing a
M2M L2L thread and its data on the same NUMA-node. B new task & other task
To distribute the workload as equally as possible, the 1 1
assignment of data to threads is realized through task factory scheduler
s equal partitioning of the FMM-tree levels. Based T m
thereon, we developed the following data and thread l
placement policies: Scatter Principally (SP), dispatcher - de@&'},‘,’tee'}cy
Compact Ideally (Cl) and Compact Scatter (CS). T —
Results
N // © Input data set: 1000 particles, multipole order p=3, tree depth d=3
B deal © Hardware: single JURECA compute node with 2 E5-2680 v3 CPUs
5 _ with 12 cores and 2-way SMT each (48 SMT threads overall)
2 T baseline © Method: each run covers a single time step of the FMM with 1000
< T —— PNN repetitions for averaging
e 107 T . NNO © Ideal: runtime of single-threaded FMM divided by #Threads
§ T © Baseline: runtime without inherent NUMA-awareness; use of numactl
Y - \A\“\~\A to emulate UMA-system for #Threads <12
o eoqe © PNN: NUMA-aware thread placement Cl and work stealing policy PNN
* T Ty © NNO: NUMA-aware thread pl t Cl and work stealing policy NNO
; placement Cl and work stealing policy
© Outcome: separation of algorithm and hardware pays off;

1 2 4 8 16 32 64 06 NUMA-Plug-In leads to effective performance improvement of 24%.
#Threads



