001     872624
005     20210130004236.0
024 7 _ |a 10.1021/acs.jcim.9b00954
|2 doi
024 7 _ |a 0095-2338
|2 ISSN
024 7 _ |a 1520-5142
|2 ISSN
024 7 _ |a 1549-9596
|2 ISSN
024 7 _ |a 1549-960X
|2 ISSN
024 7 _ |a 2128/24592
|2 Handle
024 7 _ |a altmetric:76558597
|2 altmetric
024 7 _ |a pmid:31905288
|2 pmid
024 7 _ |a WOS:000526390800046
|2 WOS
037 _ _ |a FZJ-2020-00116
082 _ _ |a 540
100 1 _ |a Nutschel, Christina
|0 P:(DE-Juel1)176299
|b 0
|u fzj
245 _ _ |a Systematically scrutinizing the impact of substitution sites on thermostability and detergent tolerance for Bacillus subtilis lipase A
260 _ _ |a Washington, DC
|c 2020
|b American Chemical Society64160
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1585045175_4655
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Improving an enzyme’s (thermo )stability or tolerance against solvents and detergents is highly relevant in protein engineering and biotechnology. Recent developments have tended towards data-driven approaches, where available knowledge about the protein is used to identify substitution sites with high potential to yield protein variants with improved stability and, subsequently, substitutions are engineered by site directed or site saturation (SSM) mutagenesis. However, the development and validation of algorithms for data-driven approaches has been hampered by the lack of availability of large-scale data measured in a uniform way and being unbiased with respect to substitution types and locations. Here, we extend our knowledge on guidelines for protein engineering following a data-driven approach by scrutinizing the impact of substitution sites on thermostability or / and detergent tolerance for Bacillus subtilis lipase A (BsLipA) at very large-scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 3439 possible single variants, which was evaluated as to thermostability and tolerances against four detergents under respectively uniform conditions. Our results provide systematic and unbiased reference data at unprecedented scale for a biotechnologically important protein, identify consistently defined hot spot types for evaluating the performance of data-driven protein engineering approaches, and show that the rigidity theory and ensemble-based approach Constraint Network Analysis yields (CNA) hot spot predictions with an up to 9-fold gain in precision over random classification.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 1
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 2
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fulton, Alexander
|0 P:(DE-Juel1)143642
|b 1
700 1 _ |a Zimmermann, Olav
|0 P:(DE-Juel1)132307
|b 2
|u fzj
700 1 _ |a Schwaneberg, Ulrich
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jaeger, Karl-Erich
|0 P:(DE-Juel1)131457
|b 4
|u fzj
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.jcim.9b00954
|g p. acs.jcim.9b00954
|0 PERI:(DE-600)1491237-5
|n 3
|p 1568-1584
|t Journal of chemical information and modeling
|v 60
|y 2020
|x 1549-960X
856 4 _ |y Published on 2020-01-06. Available in OpenAccess from 2021-01-06.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/872624/files/Autorenmanuskript%20Systematically%20scrutinizing%20the%20impact%20of%20substitution%20sites%20on%20thermostability%20and%20detergent%20tolerance%20for%20Bacillus%20subtilis%20lipase%20A.pdf
856 4 _ |u https://juser.fz-juelich.de/record/872624/files/Supporting%20InformationSystematically%20scrutinizing%20the%20impact%20of%20substitution%20sites%20on%20thermostability%20and%20detergent%20tolerance%20for%20Bacillus%20subtilis%20lipase%20A.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/872624/files/acs.jcim.9b00954.pdf
|y Restricted
856 4 _ |y Published on 2020-01-06. Available in OpenAccess from 2021-01-06.
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/872624/files/Autorenmanuskript%20Systematically%20scrutinizing%20the%20impact%20of%20substitution%20sites%20on%20thermostability%20and%20detergent%20tolerance%20for%20Bacillus%20subtilis%20lipase%20A.pdf?subformat=pdfa
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/872624/files/LipA_large_scale_final_revision_final.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/872624/files/Supporting%20InformationSystematically%20scrutinizing%20the%20impact%20of%20substitution%20sites%20on%20thermostability%20and%20detergent%20tolerance%20for%20Bacillus%20subtilis%20lipase%20A.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/872624/files/LipA_large_scale_final_revision_final.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/872624/files/acs.jcim.9b00954.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:872624
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176299
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132307
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM INF MODEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-Juel1)IMET-20090612
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21