000872626 001__ 872626
000872626 005__ 20220930130227.0
000872626 0247_ $$2doi$$a10.1002/nbm.4210
000872626 0247_ $$2ISSN$$a0952-3480
000872626 0247_ $$2ISSN$$a1099-1492
000872626 0247_ $$2Handle$$a2128/24542
000872626 0247_ $$2altmetric$$aaltmetric:74925213
000872626 0247_ $$2pmid$$apmid:31926122
000872626 0247_ $$2WOS$$aWOS:000506553100001
000872626 037__ $$aFZJ-2020-00118
000872626 082__ $$a610
000872626 1001_ $$0P:(DE-Juel1)138244$$aFarrher, Ezequiel$$b0$$eCorresponding author
000872626 245__ $$aDedicated diffusion phantoms for the investigation of free water elimination and mapping: insights into the influence of T 2 relaxation properties
000872626 260__ $$aNew York, NY$$bWiley$$c2020
000872626 3367_ $$2DRIVER$$aarticle
000872626 3367_ $$2DataCite$$aOutput Types/Journal article
000872626 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583935917_1310
000872626 3367_ $$2BibTeX$$aARTICLE
000872626 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872626 3367_ $$00$$2EndNote$$aJournal Article
000872626 520__ $$aConventional diffusion‐weighted (DW) MRI suffers from free water contamination due to the finite voxel size. The most common case of free water contamination occurs with cerebrospinal fluid (CSF) in voxels located at the CSF‐tissue interface, such as at the ventricles in the human brain. Another case refers to intra‐tissue free water as in vasogenic oedema. In order to avoid the bias in diffusion metrics, several multi‐compartment methods have been introduced, which explicitly model the presence of a free water compartment. However, fitting multi‐compartment models in DW MRI represents a well known ill conditioned problem. Although during the last decade great effort has been devoted to mitigating this estimation problem, the research field remains active.The aim of this work is to introduce the design, characterise the NMR properties and demonstrate the use of two dedicated anisotropic diffusion fibre phantoms, useful for the study of free water elimination (FWE) and mapping models. In particular, we investigate the recently proposed FWE diffusion tensor imaging approach, which takes explicit account of differences in the transverse relaxation times between the free water and tissue compartments.
000872626 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000872626 588__ $$aDataset connected to CrossRef
000872626 7001_ $$0P:(DE-Juel1)131766$$aGrinberg, Farida$$b1
000872626 7001_ $$00000-0002-0306-7329$$aKuo, Li‐Wei$$b2
000872626 7001_ $$00000-0001-9267-8342$$aCho, Kuan‐Hung$$b3
000872626 7001_ $$0P:(DE-Juel1)168245$$aBuschbeck, Richard P.$$b4
000872626 7001_ $$00000-0003-0716-7156$$aChen, Ming‐Jye$$b5
000872626 7001_ $$00000-0003-0888-4149$$aChiang, Husan‐Han$$b6
000872626 7001_ $$0P:(DE-Juel1)164356$$aChoi, Chang‐Hoon$$b7
000872626 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b8$$ufzj
000872626 773__ $$0PERI:(DE-600)2002003-X$$a10.1002/nbm.4210$$n4$$pe4210$$tNMR in biomedicine$$v33$$x1099-1492$$y2020
000872626 8564_ $$uhttps://juser.fz-juelich.de/record/872626/files/Farrher_et_al-2020-NMR_in_Biomedicine-1.pdf$$yOpenAccess
000872626 8564_ $$uhttps://juser.fz-juelich.de/record/872626/files/Farrher_et_al-2020-NMR_in_Biomedicine-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872626 8767_ $$92019-10-23$$d2020-01-13$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pNBM-18-0110
000872626 909CO $$ooai:juser.fz-juelich.de:872626$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000872626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138244$$aForschungszentrum Jülich$$b0$$kFZJ
000872626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131766$$aForschungszentrum Jülich$$b1$$kFZJ
000872626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168245$$aForschungszentrum Jülich$$b4$$kFZJ
000872626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b7$$kFZJ
000872626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b8$$kFZJ
000872626 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000872626 9141_ $$y2020
000872626 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872626 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000872626 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872626 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNMR BIOMED : 2017
000872626 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872626 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872626 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872626 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872626 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872626 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872626 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872626 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000872626 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872626 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000872626 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000872626 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000872626 980__ $$ajournal
000872626 980__ $$aVDB
000872626 980__ $$aUNRESTRICTED
000872626 980__ $$aI:(DE-Juel1)INM-4-20090406
000872626 980__ $$aI:(DE-Juel1)INM-11-20170113
000872626 980__ $$aI:(DE-82)080010_20140620
000872626 980__ $$aAPC
000872626 9801_ $$aAPC
000872626 9801_ $$aFullTexts