001     872626
005     20220930130227.0
024 7 _ |a 10.1002/nbm.4210
|2 doi
024 7 _ |a 0952-3480
|2 ISSN
024 7 _ |a 1099-1492
|2 ISSN
024 7 _ |a 2128/24542
|2 Handle
024 7 _ |a altmetric:74925213
|2 altmetric
024 7 _ |a pmid:31926122
|2 pmid
024 7 _ |a WOS:000506553100001
|2 WOS
037 _ _ |a FZJ-2020-00118
082 _ _ |a 610
100 1 _ |a Farrher, Ezequiel
|0 P:(DE-Juel1)138244
|b 0
|e Corresponding author
245 _ _ |a Dedicated diffusion phantoms for the investigation of free water elimination and mapping: insights into the influence of T 2 relaxation properties
260 _ _ |a New York, NY
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583935917_1310
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Conventional diffusion‐weighted (DW) MRI suffers from free water contamination due to the finite voxel size. The most common case of free water contamination occurs with cerebrospinal fluid (CSF) in voxels located at the CSF‐tissue interface, such as at the ventricles in the human brain. Another case refers to intra‐tissue free water as in vasogenic oedema. In order to avoid the bias in diffusion metrics, several multi‐compartment methods have been introduced, which explicitly model the presence of a free water compartment. However, fitting multi‐compartment models in DW MRI represents a well known ill conditioned problem. Although during the last decade great effort has been devoted to mitigating this estimation problem, the research field remains active.The aim of this work is to introduce the design, characterise the NMR properties and demonstrate the use of two dedicated anisotropic diffusion fibre phantoms, useful for the study of free water elimination (FWE) and mapping models. In particular, we investigate the recently proposed FWE diffusion tensor imaging approach, which takes explicit account of differences in the transverse relaxation times between the free water and tissue compartments.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Grinberg, Farida
|0 P:(DE-Juel1)131766
|b 1
700 1 _ |a Kuo, Li‐Wei
|0 0000-0002-0306-7329
|b 2
700 1 _ |a Cho, Kuan‐Hung
|0 0000-0001-9267-8342
|b 3
700 1 _ |a Buschbeck, Richard P.
|0 P:(DE-Juel1)168245
|b 4
700 1 _ |a Chen, Ming‐Jye
|0 0000-0003-0716-7156
|b 5
700 1 _ |a Chiang, Husan‐Han
|0 0000-0003-0888-4149
|b 6
700 1 _ |a Choi, Chang‐Hoon
|0 P:(DE-Juel1)164356
|b 7
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 8
|u fzj
773 _ _ |a 10.1002/nbm.4210
|0 PERI:(DE-600)2002003-X
|n 4
|p e4210
|t NMR in biomedicine
|v 33
|y 2020
|x 1099-1492
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/872626/files/Farrher_et_al-2020-NMR_in_Biomedicine-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/872626/files/Farrher_et_al-2020-NMR_in_Biomedicine-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872626
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168245
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)164356
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NMR BIOMED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21