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Abstract In this article, a concept of implicit methods for scalar conservation
laws in one or more spatial dimensions allowing also for source terms of various
types is presented. This material is a significant extension of previous work of
the first author [5]. Implicit notions are developed that are centered around
a monotonicity criterion. We demonstrate a connection between a numerical
scheme and a discrete entropy inequality, which is based on a classical approach
by Crandall and Majda. Additionally, three implicit methods are investigated
using the developed notions. Next, we conduct a convergence proof which is
not based on a classical compactness argument. Finally, the theoretical results
are confirmed by various numerical tests.
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1 Introduction

This article deals with the entropy solution of hyperbolic conservation laws
in the sense of Kružkov. Specifically, we allow the numerical methods to act
within the two most general settings, that is (i) smooth fluxes together with
non-linear sources and (ii) continuous fluxes and sources depending both on
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space and time. The corresponding analytical existence and uniqueness results
for these cases are given within a number of papers of Kružkov and his co-
workers, see for example [2,14,15] and the references therein.

This paper represents a significant extension of the work by Breuß [5],
where implicit methods are considered for homogeneous scalar equations in
one dimension. To our knowledge, the combination of the developed concept
of implicit methods for both mentioned general problems together with the
application of corresponding schemes on problems belonging to both classes is
new. Accordingly, the main contribution of this paper is the extension of the
rigorously validated range of applicability of finite difference methods.

The encountered difficulties for the described task have already been dis-
cussed in the introduction of Breuß [5]. Summarizing, information that is prop-
agated with infinite speed may take place provided that a flux function of a
nonlinear conservation law is not Lipschitz continuous as it is accepted in set-
ting (ii). A detailed one-dimensional example is given by Kružkov and Panov
in [15] (see also [5]), where the exact solution is known. This example shows
that a rarefaction wave extending to infinity after arbitrarily small time takes
place. Additionally, this example has a pole for u = 0 and the solution domain
is infinite although an initial condition with compact support is given.

Two direct conclusions emerge from this example. At first, the Courant-
Friedrichs-Lewy (CFL) number would be effectively zero provided an explicit
scheme is used. Additionally, the Kuznetsov approach for convergence [16] is
not employable, because it relies on a suitable error estimation which explicitly
uses the Lipschitz continuity of the flux and the boundedness of the domain
of the solution. At second, a variety of other well-established approaches for
the convergence of numerical methods are not applicable. For instance, one
approach is based on Helly’s theorem which uses the compactness of the func-
tion space of bounded variations (BV). This is employed in the convergence
proofs of Total Variation Diminishing (TVD) methods. But using the BV con-
cept, this function space is only compact (see LeVeque [17]) provided a fixed
compact space-time-domain containing the solution is used. Hence, the com-
pactness property of this function space is unfortunately not applicable in the
discussed case. The same is true for explicit monotone methods as it is the case
in the fundamental work of Crandall and Majda [7]. They used the properties
of this function space to obtain a compactness argument. Especially, in that
work the sources are also assumed to be essentially bounded and BV-stable
integrable functions depending on space and time. In another important ap-
proach introduced by DiPerna [9] measure valued solutions are used, where the
compactness of the domain of the solution both in space and time is assumed
which has already been discussed in [6].

From this discussion it should be clear that we need to employ implicit
schemes such that the convergence strategy is different from the before men-
tioned ones. Therefore, we use the monotonicity of implicit methods to obtain
a discrete comparison principle. This suffices to guarantee the convergence of
such methods to the entropy solution in the sense of Kružkov.
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Therefore, in this paper the monotonicity property of an implicit scheme
is investigated (see [10,17] for the discussion for explicit schemes). Hence,
it is indispensable to avoid any derivative of the flux. As we will show, we
construct a monotonicity notion that is based on a comparison of data sets
using an induction principle.

The application of this monotonicity notion on three implicit variations
of well-known monotone explicit schemes is investigated. One would expect,
that implicit schemes are generally capable to capture all effects described by
a conservation law even for continuous fluxes and general sources, because in
the implicit case the numerical characteristics include all the characteristics
of the differential equation. However, while our monotonicity investigations of
an implicit upwind scheme and an implicit Godunov-type method yield the
expected results, the investigation of the implicit variation of the traditional
Lax-Friedrichs scheme shows, that the scheme is only monotone even in the full
implicit case if the flux is Lipschitz continuous. Furthermore, the restriction on
the admissible Lipschitz constant of the flux is not depending on the number
of spatial dimensions. This interesting result which is new to our knowledge
is explored via a simple experiment using a two-dimensional linear advection
equation.

Let us note that, on a broader scope, implicit methods for hyperbolic con-
servation laws have a long history of interest, see e.g. [1,8] for two important
milestones. While implicit discrete formulations require to solve systems of
equations, the reason for some interest in implicit schemes arises as their use
is sometimes advocated, for instance if the modeled process incorporates dif-
ferent wave speeds that need to be resolved by employing a common time
step. This may be the case especially in systems of equations, for which the
scalar hyperbolic PDEs traditionally serve as role models in the mathematical
sense. As another point of practical interest, many initially time-dependent
processes, for instance in gas dynamics (i.e. compressible flows) described by
the hyperbolic system of Euler equations, eventually develop steady state solu-
tions which are much better captured using an implicit scheme than an explicit
one, cf. [19]. Thus, the theoretical foundation of implicit scheme components
which we discuss here is of general interest in several fields.

This article consists of five additional sections. In Section 2, we briefly
review the two most general theoretical results on solutions of conservation
laws available to our knowledge, namely the existence and uniqueness results
established in [2] and [13]. In the next section, we introduce the notions for
implicit methods that are centered around monotonicity. The given detailed
convergence proof is an extension of the strategy given in Breuß [5]. Section
4 presents the investigation of three numerical methods with respect to their
monotonicity. Additionally, for these methods the proofs of convergence to-
wards the entropy solution are given. Finally, we present the results of various
numerical tests in Section 5 followed by a short summary and conclusive re-
marks in Section 6.
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2 The setting

Within this section, we define the two mathematical scenarios of interest, i.e.
we briefly review the type of problems considered in [2] and [13].

Scenario 1 The Cauchy problem under consideration is

∂

∂t
u (x, t) +

d∑

l=1

∂

∂xl

fl (u (x, t)) = q on R
d × (0, T ) , (1)

u (x, 0) = u0 (x) on R
d , (2)

where T is a fixed positive number. Concerning the flux functions we generally
assume

fl(u) ∈ C (R; R) , l = 1, . . . , d . (3)

In order to apply the uniqueness theorem given in [2], the fluxes are addition-
ally supposed to satisfy the growth conditions

|fl(u)− fl(û)| ≤ ωl(u− û) a.e. for u ≥ û and for l = 1, . . . , d ,

with the moduli of continuity ωl featuring

ω1(0) = . . . = ωd(0) = 0 and lim inf
r→0

r1−d

d∏

l=1

ωl(r) < ∞ .

Note that these conditions on the fluxes are more general than the usually
assumed Lipschitz continuity. The initial condition shall satisfy

u0 ∈ L∞
loc

(
R

d; R
)
, (4)

and for the source term we consider

q ≡ q (x, t) ∈ L1
loc

(
R

d × (0, T ); R
)
, (5)

q(·, t) ∈ L∞
(
R

d; R
)

for a.e. t ∈ (0, T ) and

∫ T

0

‖q(·, t)‖∞ dt < ∞ . (6)

Under the conditions (3) – (6), Bénilan and Kružkov [2] proved uniqueness of
the entropy solution of (1) – (2).

Because the solution of the Cauchy problem generally develops discontinu-
ities even if u0 is smooth, it is often considered in its weak form, i.e.

∫ ∞

0

∫

Rd

[

u (x, t)φt (x, t) +
d∑

l=1

fl(u (x, t))
∂

∂xl

φ (x, t)

]

dx dt

= −

∫

Rd

u0 (x)φ0 (x) dx

−

∫ ∞

0

∫

Rd

q (x, t)φ (x, t) dx dt ∀φ ∈ C∞
0

(
R

d+1; R
)
. (7)
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It is well-known that weak solutions are in general not unique, see for exam-
ple [17] and the references therein. In order to ensure uniqueness, a so-called
entropy condition has to be introduced. The already mentioned entropy con-
dition due to Kružkov [2] which guarantees the uniqueness of a solution of (1)
– (2) takes the form

∫ ∞

0

∫

Rd

[

|u (x, t)− k|φt (x, t)

+

d∑

l=1

sgn (u (x, t)− k) [fl(u (x, t))− fl(k)]
∂

∂xl

φ (x, t)

]

dx dt

≥ −

∫

Rd

|u0 (x)− k|φ0 (x) dx

−

∫ ∞

0

∫

Rd

sgn [u (x, t)− k] q (x, t)φ (x, t) dx dt (8)

for all φ ∈ C∞
0

(
R

d+1; R
)
with φ ≥ 0 and for all k ∈ R .

Scenario 2 The Scenario 2 deals with the Cauchy problem

∂

∂t
u (x, t) +

d∑

l=1

d

dxl

fl (x, t, u (x, t)) = q on R
d × (0, T ) , (9)

u (x, 0) = u0 (x) on R
d , (10)

where T is a fixed positive number and with

d

dxl

fl ≡ flxl
+ fluuxl

.

In comparison to Scenario 1, we impose different assumptions on the fluxes
and the source terms. As in (4), there is no particular condition imposed on
the initial data. The flux functions are now assumed to satisfy

fl(x, t, u) ∈ C1
(
R

d × R+ × R; R
)
, l = 1, . . . , d . (11)

As source terms we consider functions

q ≡ q (x, t, u(x, t)) ∈ C1
(
R

d × R+ × R; R
)
. (12)

Under the conditions (11) and (12), Kružkov [13] proved the uniqueness of
the entropy solution of (9) – (10). Comparing the weak formulation of this
problem with the weak formulation (7), we have to substitute

∫ ∞

0

∫

Rd

q (x, t, u(x, t))φ (x, t) dx dt for

∫ ∞

0

∫

Rd

q (x, t)φ (x, t) dx dt .

(13)
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The assumptions (11) and (12) yield the form of the Kružkov entropy condition
as

∫ ∞

0

∫

Rd

[

|u (x, t)− k|φt (x, t)

+

d∑

l=1

sgn (u (x, t)− k) [fl(x, t, u (x, t))− fl(x, t, k)]
∂

∂xl

φ (x, t)

]

dx dt

≥ −

∫

Rd

|u0 (x)− k|φ0 (x) dx

−

∫ ∞

0

∫

Rd

d∑

l=1

sgn [u (x, t)− k]
[

q (x, t, u(x, t))− flxl
(x, t, k)

]

φ (x, t) dx dt

for all φ ∈ C∞
0

(
R

d+1; R
)
with φ ≥ 0 and for all k ∈ R . (14)

3 Numerical methods

We first describe the implicit notions, followed by the proofs of the involved
Lemmas and Theorems in a separate section. For the sake of brevity, we dis-
cuss only Scenario 1 in detail, since the techniques which have to be used
with respect to Scenario 2 are identical. The proper conceptual extension to
Scenario 2 is described within additional remarks.

3.1 A concept of implicit methods

Since we want to describe numerical methods in d spatial dimensions, we spend
some effort on a general notation.

Because we investigate finite difference methods, we have to introduce grid
points. For simplicity, we consider grids which are equidistant with respect
to the individual d spatial dimensions as well as to time, i.e. we employ grid
spacings ∆xl corresponding to the space dimensions l = 1, . . . , d, and ∆t
corresponding to time.

Since this results in a countable number of grid points, we introduce a
linear numbering J of the spatial grid points

J = {0, 1, 2, . . .} .

We also define a bijective mapping

J̃ : J −→ R
d

i −→ (i1∆x1, i2∆x2, . . . , id∆xd)
T

with (i1, i2, . . . , id)
T ∈ Z

d .

Let us note that the mapping goes formally to R
d, but it just maps to a

countable subset of Rd. In order to describe the indices within the stencil of a
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numerical method, we define the index i± δl via

i± δl
J̃
−→ (i1∆x1, i2∆x2, . . . , (il ± 1)∆xl, . . . , id∆xd)

T
.

Let uk
j and qkj denote the value of the numerical solution and the value of

the source term at the point with the index j ∈ J at the time level k∆t,
respectively. With these notations, we consider conservative implicit methods
in the form (refer also to [3,17])

un+1
j = un

j −
d∑

l=1

∆t

∆xl

{

gl

(

un+1
j , un+1

j+δl

)

− gl

(

un+1
j−δl, u

n+1
j

)}

+∆tqn+1
j . (15)

We assume that the numerical flux functions gl introduced in (15) are consis-
tent, i.e.

gl(v, v) = fl(v) holds for all v ∈ R and for all l = 1, . . . , d .

In the case of Scenario 2, we simply add arguments (xj , t
n+1) within the fluxes;

we will not do this explicitly in the following.
The key to nonlinear stability is the notion of monotonicity.

Definition 1 (Monotonicity) Let two data sequences

vn =
{
vnj

}

j∈J
and wn =

{
wn

j

}

j∈J

be given. Let the investigated consistent and conservative numerical method
produce new sequences of data vn+1 and wn+1 from the given data vn and
wn, respectively. Then the numerical method is monotone iff the implication

vn ≥ wn ⇒ vn+1 ≥ wn+1 (16)

holds in the sense of the comparison of components.

It is useful to define H and H̃l using d = {1, . . . , d} via

un+1
j = H

(

l ∈ d, un+1
j−δl, u

n+1
j , un+1

j+δl, u
n
j

)

= un
j −

d∑

l=1

∆t

∆xl

{

gl

(

un+1
j , un+1

j+δl

)

− gl

(

un+1
j−δl, u

n+1
j

)}

+∆tqn+1
j

= un
j +

d∑

l=1

H̃l

(

un+1
j−δl, u

n+1
j , un+1

j+δl

)

+∆tqn+1
j . (17)

Theorem 1 (Monotonicity of implicit methods) Let a, b and c be arbitrarily
chosen but fixed real numbers. A consistent and conservative implicit method
of type (15) is monotone iff for all spatial dimensions l ∈ {1, . . . , d} holds

H̃l (a+∆a, b, c) ≥ H̃l (a, b, c) ∀∆a ≥ 0 , (18)

H̃l (a, b, c+∆c) ≥ H̃l (a, b, c) ∀∆c ≥ 0 . (19)
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Note that we have omitted the condition

H
(

l ∈ d, un+1
j−δl, u

n+1
j , un+1

j+δl, s+∆s
)

≥ H
(

l ∈ d, un+1
j−δl, u

n+1
j , un+1

j+δl, s
)

for all j ∈ J and all ∆s ≥ 0, since this condition is redundant. This is due to
the form of the method (15). Additionally, note that the monotonicity property
does not depend on the exact nature of the source terms, i.e. both Scenario 1
and Scenario 2 are included within the range of applicability of Theorem 1.

Theorem 2 (L∞-Stability) Let an implicit method of the form (15) be given,
which is also conservative and monotone. Then the numerical solution is L∞-
stable over any finite time interval [0, T ].

The following definition is useful for proving convergence towards the entropy
solution.

Definition 2 (Consistency with the entropy condition) An implicit numerical
scheme of type (15) is consistent with the entropy condition of Kružkov, if there
exist for all l = 1, . . . , d numerical entropy fluxes Gl which satisfy for all k ∈ R

the following assertions:

1. Consistency with the entropy flux of Kružkov

Gl(v, v; k) = Fl(v; k) ∀v with Fl(v; k) = sgn(v − k) [fl(v)− fl(k)] . (20)

2. Validity of a discrete entropy inequality

U
(
un+1
j ; k

)
− U

(
un
j ; k

)

∆t

≤ −
d∑

l=1

Gl

(

un+1
j , un+1

j+δl; k
)

−Gl

(

un+1
j−δl, u

n+1
j ; k

)

∆xl

+sgn
[
un+1
j − k

]
qn+1
j , (21)

where U(v; k) = |v − k| is chosen due to Kružkov.

In the sequel, we define

a ∨ b := max(a, b) and a ∧ b := min(a, b) . (22)

The important connection between the numerical entropy fluxes Gl and the
numerical flux functions gl is now established which is based on a variation of
a procedure employed by Crandall and Majda [7].

Lemma 1 Let a consistent and conservative numerical scheme of type (15)
be given with numerical flux functions gl, l = 1, . . . , d. Then the numerical
entropy fluxes defined by

Gl(v, w; k) := gl(v ∨ k,w ∨ k)− gl(v ∧ k,w ∧ k) (23)

are consistent with the entropy fluxes of Kružkov.
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One can now prove the following result, partly by a variation of the procedure
given in [7]. We introduce the source term within the proof.

Theorem 3 Let an implicit scheme of the form (15) be given, which is also
consistent, conservative, and monotone. Then the scheme is also consistent
with the entropy condition of Kružkov.

Under the same assumptions, we prove convergence of the corresponding nu-
merical approximation to the entropy solution. We want to do this later when
we concretely investigate numerical schemes.

3.2 Proofs

We first want to prove Theorem 1. The idea of the proof can be sketched as
follows. Let two sequences wn and wn+1 be given, where wn+1 results from
an application of a considered method on wn. Then, a positive change in a
given value wn

j inspires a positive change in wn+1
j . Secondly, a positive change

in wn+1
j inspires positive changes in wn+1

j±δl for all l, thus creating no oscil-

lations. Thirdly, concerning an arbitrary index i, positive changes in wn+1
i±δl

result in positive changes in wn+1
i . Since the index j used in the second ar-

gument is chosen arbitrarily, this is the same argument as the third one for
j ∈ {i± δl; l = 1, . . . , d}. If and only if these conditions are fulfilled by a
considered method, the method is monotone.

In order to give the proof of Theorem 1 a convenient structure, we first
give the following Lemma.

Lemma 2 Let a consistent and conservative implicit method of the form (15)
be given, which satisfies the conditions (18) and (19). Furthermore, let two
sequences vn =

{
vnj

}

j∈J
and wn =

{
wn

j

}

j∈J
be given. Then from

∃ i ∈ J : vni > wn
i and ∀ j ∈ J (j 6= i) : vnj = wn

j

follows vn+1 ≥ wn+1 in the sense of the comparison of components.

Proof (of Lemma 2)
By the assumption of the Lemma there exists an index i ∈ J so that vni > wn

i

holds. Without restriction of generality we choose i = 0. The proof of the
assertion follows by induction over suitable subsets of J .

Let us introduce these subsets. Therefore, let Jm denote a subset of J con-
taining m elements with

∀m0 ∈ Jm ∃m1 ∈ Jm (m0 6= m1) :
[

{m0} ∩ {p ∈ Jm ; p = m1 ± δl, l = 1, . . . , d}
]

6= ∅

for m ≥ 2, thus the elements of Jm are indices of neighboring points.

Beginning of the induction: m = 1
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As indicated, we choose without restriction of generality J1 = {0}. The state-
ment is true because of the form of the method (15), so that

H
(
l ∈ d, wn+1

−δl , w
n+1
0 , wn+1

δl , s+∆s
)

≥ H
(
l ∈ d, wn+1

−δl , w
n+1
0 , wn+1

δl , s
)

∀∆s ≥ 0 holds.

Assumption:
The statement is true for arbitrary but fixed m > 1.

Induction step: m 7→ m+ 1
Let the statement be true for the subsets

{
vn+1
i

}

i∈Jm

and
{
wn+1

i

}

i∈Jm

of the

sequences vn+1 and wn+1. In particular, it holds

vn+1
m̃ ≥ wn+1

m̃ for an index m̃ ∈ Jm

with
[

{i ∈ J ; i = m̃± δl, l = 1, . . . , d} ∩ (J \ Jm)
]

6= ∅

which is otherwise chosen arbitrarily, i.e. we consider an index m̃ corresponding
to a grid point with at least one neighbor having an index not in Jm.

Without restriction on generality, let us choose a particular index lm cor-
responding to the situation

m̃ ∈ Jm and m̃+ δlm /∈ Jm .

Since by construction the sequences vn+1 and wn+1 are identical outside the
considered subsets, it holds

H̃lm

(
vn+1
m̃ , wn+1

m̃+δlm
, wn+1

m̃+2δlm

)
≥ H̃lm

(
wn+1

m̃ , wn+1
m̃+δlm

, wn+1
m̃+2δlm

)

by (18). If the index m̃+ 2δlm is already in Jm, we estimate

H̃lm

(
vn+1
m̃ , wn+1

m̃+δlm
, vn+1

m̃+2δlm

)
≥ H̃lm

(
wn+1

m̃ , wn+1
m̃+δlm

, wn+1
m̃+2δlm

)

by also using (19). The case m̃ ∈ Jm and m̃ − δlm /∈ Jm can be handled
analogously.

By defining

Jm+1 := Jm ∪ {m̃+ δlm} or Jm+1 := Jm ∪ {m̃− δlm}

corresponding to the situation under consideration, it follows vn+1
i ≥ wn+1

i for
all i ∈ Jm+1. Since m̃ and lm were chosen arbitrarily within the framework of
the construction, the procedure is well-defined and the proof is finished.

Proof (of Theorem 1)
Let again two sequences vn, wn be given, which are mapped on sequences vn+1

and wn+1 by application of the considered consistent and conservative numer-
ical method, respectively.

”⇒”:
Let the method be monotone in the sense of Definition 1. Let vn ≥ wn hold in
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the sense of comparison of components. By the assumed monotonicity of the
scheme follows vn+1 ≥ wn+1. It remains to verify the validity of the conditions
(18) and (19).

To condition (18):
Let l ∈ {1, . . . , d} be chosen arbitrarily but fixed. Accordingly, let an arbi-
trarily chosen but fixed index i and a corresponding set of values

{a, b, c} ⊂ wn+1 be given with
(
wn+1

i−δl, w
n+1
i , wn+1

i+δl

)
= (a, b, c) .

Assume that for ∆a ≥ 0 it does not hold in general

H̃l (a+∆a, b, c) ≥ H̃l (a, b, c) .

Then there exist two tuples (a1, b1, c) and (a2, b2, c) with a1 > a2 and

H̃l (a1, b1, c) < H̃l (a2, b2, c) . (24)

Since we investigate the general situation, we may well assume equality of the
remainder of the sequences under consideration, thus the only resulting change
by application of the method originates from (24). By (15) it follows that
b1 < b2 has in general to be valid. On the other hand there is (a1, b1) ≥ (a2, b2)
in the sense of comparison of components by the assumed monotonicity of the
method, and so the assumption is wrong and the validity of (18) is verified.

To condition (19):
The proof can be done analogously.

”⇐”:
Next, the validity of the monotonicity condition (16) under the assumptions
(18) and (19) is proven. Therefore, we define the set

Ĵn := {i ∈ J ; vni > wn
i , v

n
i ∈ vn, wn

i ∈ wn} .

There are only a few possibilities for the composition of Ĵn: It may consist of
the empty set or a finite or infinite subset of the index set J containing the
indices of all spatial grid points. Since we have to take into account all these
cases, we define

Ĵn
m :=

{

Ĵn ; ♯
(

Ĵn
)

= m
}

.

The proof of the assertion follows by induction over m ≥ 1 concerning these
sets. Note that the case m = 0 is trivial.

Beginning of the induction: Ĵn = Ĵn
1 .

Let i be the index in the arbitrarily chosen but fixed index set Ĵn
1 . Then the

validity of the monotonicity condition follows by application of Lemma 2.

Assumption: The assertion holds for all subsets of Ĵn = Ĵn
m for an arbitrarily

chosen but fixed number m > 1.

Induction step: m 7→ m+ 1
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Now we consider Ĵn
m+1 with Ĵn

m ⊂ Ĵn
m+1. We define two particular indices m1,

m2 with

m1 ∈ Ĵn
m and m2 ∈

(

Ĵn
m+1 \ Ĵ

n
m

)

.

Thereby, the index m1 is chosen arbitrarily but fixed. By the assumption of the
induction, the scheme is monotone with respect to positive changes in values
corresponding to the index set Ĵn

m. This means in particular that a positive
change in vnm1

together with positive changes in other values corresponding to

Ĵn
m leads to non-negative changes in the sequence vn+1.
Now a simultaneous positive change in vnm1

and vnm2
is considered while

in the background there are arbitrary but fixed positive changes in the values
corresponding to Ĵn

m+1 \ {m1, m2}.

Let the data resulting from positive changes in vni , i ∈ Ĵn
m \ {m1, m2}, be

denoted by v̄n+1, i.e. v̄n+1 ≥ wn+1 holds by the assumption of the induction
step.

Moreover, let ∆1
j be a change in v̄n+1

j induced by a positive change in

vnm1
. Thus ∆1

j is always non-negative by the assumption of the induction.

Analogously, let ∆2
j a change in v̄n+1

j induced by a positive change in vnm2
.

The change ∆2
j is also non-negative which follows analogously to the proof of

Lemma 2.
There are two possibilities to investigate for the mutual effects of such

changes in data corresponding to an arbitrary but fixed index ĩ and an ac-
cordingly arranged index li ∈ {1, . . . , d}:

H̃li

(

v̄n+1

ĩ−δli
+∆1

ĩ−δli
, v̄n+1

ĩ
, v̄n+1

ĩ+δli
+∆2

ĩ+δli

)

(18),(19)

≥ H̃li

(

v̄n+1

ĩ−δli
, v̄n+1

ĩ
, v̄n+1

ĩ+δli

)

and

H̃li

(

v̄n+1

ĩ−δli
+∆2

ĩ−δli
, v̄n+1

ĩ
, v̄n+1

ĩ+δli
+∆1

ĩ+δli

)

(18),(19)

≥ H̃li

(

v̄n+1

ĩ−δli
, v̄n+1

ĩ
, v̄n+1

ĩ+δli

)

.

Note the arbitrary choice of m1 and m2 by a simultaneous change in the
data corresponding to the index set Ĵn

m \ {m1, m2}. Since there are also no
limitations concerning the choices of Ĵn

m and li, the procedure is well defined
and the proof is finished.

Proof (of Theorem 2)
Let a sequence u0 ∈ L∞ be given. We then identify the finite values

a := inf
j∈J

u0
j and b := sup

j∈J

u0
j .
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Since the source terms are pointwise bounded over the time interval (0, T ) —
see assumptions (6) and (12), respectively — they are in both scenarios of
interest especially bounded by a finite number M with

∫ T

0

‖q‖∞ dt < M .

Consequently, by the assumed monotonicity follows that the numerical solution
obtained via given data u0 is bounded for all n with n∆t < T by an ≤ un ≤ bn

with

anj := a−M (> −∞) ∀j ∈ J and bnj := b+M (< ∞) ∀j ∈ J .

Proof (of Lemma 1)
Because the numerical scheme is consistent and conservative, the statement

Gl(v, v; k) = gl(v ∨ k, v ∨ k)− gl(v ∧ k, v ∧ k) = sgn(v − k)[fl(v)− fl(k)]

holds by (22) for all l = 1, . . . , d and all k ∈ R.

Proof (of Theorem 3)
Since the method is assumed to be consistent and conservative, there exist
numerical flux functions gl, l = 1, . . . , d, so that one can construct numerical
entropy fluxes Gl by applying Lemma 1. Thereby, the consistency with the
entropy fluxes due to Kružkov is given. It is left to show the validity of a
discrete entropy inequality. Therefore, let k ∈ R be chosen arbitrarily but
fixed. By using the definition of Gl, we derive

−
d∑

l=1

∆t

∆xl

{

Gl

(

un+1
j , un+1

j+δl; k
)

−Gl

(

un+1
j−δl, u

n+1
j ; k

)}

= H
(

l ∈ d, un+1
j−δl ∨ k, un+1

j ∨ k, un+1
j+δl ∨ k, un

j ∨ k
)

−H
(

l ∈ d, un+1
j−δl ∧ k, un+1

j ∧ k, un+1
j+δl ∧ k, un

j ∧ k
)

−
∣
∣un

j − k
∣
∣ . (25)

Now we estimate the terms involving H by using the monotonicity properties
of the method. It is necessary to employ a diversion of the cases un+1

j ≥ k and

un+1
j < k.

(a) Case un+1
j ≥ k:

H
(

l ∈ d, un+1
j−δl ∨ k, un+1

j ∨ k, un+1
j+δl ∨ k, un

j ∨ k
)

(a)
= un

j ∨ k −
d∑

l=1

∆t

∆xl

{

gl

(

un+1
j , un+1

j+δl ∨ k
)

− gl

(

un+1
j−δl ∨ k, un+1

j

)}

+∆tqn+1
j
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≥ un
j −

d∑

l=1

∆t

∆xl

{

gl

(

un+1
j , un+1

j+δl

)

− gl

(

un+1
j−δl, u

n+1
j

)}

+∆tqn+1
j

= un+1
j

(a)
= un+1

j ∨ k .

(b) Case un+1
j < k:

H
(

l ∈ d, un+1
j−δl ∨ k, un+1

j ∨ k, un+1
j+δl ∨ k, un

j ∨ k
)

(b)
= un

j ∨ k −
d∑

l=1

∆t

∆xl

{

gl

(

k, un+1
j+δl ∨ k

)

− gl

(

un+1
j−δl ∨ k, k

)}

+∆tqn+1
j

≥ k −
d∑

l=1

∆t

∆xl

{gl (k, k)− gl (k, k)}+∆tqn+1
j

= k +∆tqn+1
j

(b)
= un+1

j ∨ k +∆tqn+1
j .

(c) Case un+1
j ≥ k:

H
(

l ∈ d, un+1
j−δl ∧ k, un+1

j ∧ k, un+1
j+δl ∧ k, un

j ∧ k
)

(c)
= un

j ∧ k −
d∑

l=1

∆t

∆xl

{

gl

(

k, un+1
j+δl ∧ k

)

− gl

(

un+1
j−δl ∧ k, k

)}

+∆tqn+1
j

≤ k −
d∑

l=1

∆t

∆xl

{gl (k, k)− gl (k, k)}+∆tqn+1
j

= k +∆tqn+1
j

(c)
= un+1

j ∧ k +∆tqn+1
j .

(d) Case un+1
j < k:

H
(

l ∈ d, un+1
j−δl ∧ k, un+1

j ∧ k, un+1
j+δl ∧ k, un

j ∧ k
)

(d)
= un

j ∧ k −
d∑

l=1

∆t

∆xl

{

gl

(

un+1
j , un+1

j+δl ∧ k
)

− gl

(

un+1
j−δl ∧ k, un+1

j

)}

+∆tqn+1
j

≤ un
j −

d∑

l=1

∆t

∆xl

{

gl

(

un+1
j , un+1

j+δl

)

− gl

(

un+1
j−δl, u

n+1
j

)}

+∆tqn+1
j

= un+1
j

(d)
= un+1

j ∧ k .

By combining all these cases, we obtain from (25) the inequality

−
d∑

l=1

∆t

∆xl

{

Gl

(

un+1
j , un+1

j+δl; k
)

−Gl

(

un+1
j−δl, u

n+1
j ; k

)}
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+sgn
[
un+1
j − k

]
∆tqn+1

j

≥ un+1
j ∨ k − un+1

j ∧ k − sgn
[
un+1
j − k

]
∆tqn+1

j

+sgn
[
un+1
j − k

]
∆tqn+1

j −
∣
∣un

j − k
∣
∣

=
∣
∣un+1

j − k
∣
∣−

∣
∣un

j − k
∣
∣ .

By construction, the procedure is well defined. Division by ∆t gives the desired
discrete entropy inequality.

In the case of Scenario 2, the validity of the corresponding discrete entropy
inequality can be proven in the same way, resulting essentially from the mono-
tonicity of the method. The difference between Scenario 1 and Scenario 2 is
made up by substituting

d∑

l=1

sgn
[
un+1
j − k

] [

qn+1
j − flxl

(j, n+ 1)
]

for sgn
[
un+1
j − k

]
qn+1
j

with flxl
(j, n+ 1) := flxl

(

J̃(j), (n+ 1)∆t, un+1
j

)

.

4 Implicit numerical methods

This section contains the theoretical investigation of a few selected implicit
methods. These are: (1) An implicit upwind scheme, (2) an implicit version of
the Lax-Friedrichs scheme and (3) an implicit Godunov-type method.

4.1 An implicit upwind method

The implicit formulation of the upwind method reads

un+1
j = un

j −
d∑

l=1

∆t

∆xl

{

fl
(
un+1
j

)
− fl

(

un+1
j−δl

)}

+∆tqn+1
j . (26)

We now employ the developed implicit notion of monotonicity.
To condition (18):

H̃l (a+∆a, b, c)− H̃l (a, b, c)

=

[

−
∆t

∆xl

[fl(b)− fl(a+∆a)]

]

−

[

−
∆t

∆xl

[fl(b)− fl(a)]

]

=
∆t

∆xl

[fl(a+∆a)− fl(a)] .

The condition (18) is fulfilled if fl grows monotonically for all l = 1, . . . , d.
To condition (19):

H̃l (a, b, c+∆c)− H̃l (a, b, c)

=

[

−
∆t

∆xl

[fl(b)− fl(a)]

]

−

[

−
∆t

∆xl

[fl(b)− fl(a)]

]

= 0 (≥ 0) .
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Thus, the condition (19) is always fulfilled and the implicit upwind scheme is
monotone if all the fluxes fl grow monotonically. This is a nice property of the
developed notions, since also the implicit scheme respects the direction of the
flow. Note that the fl do not need to be Lipschitz continuous to ensure the
monotonicity of the scheme.

4.2 The implicit Lax-Friedrichs method

We investigate the implicit Lax-Friedrichs scheme

un+1
j

= un
j +

d∑

l=1

{
1

2

[

un+1
j−δl − 2un+1

j + un+1
j+δl

]

−
∆t

2∆xl

[

fl(u
n+1
j+δl)− fl(u

n+1
j−δl)

]}

.

To condition (18):

H̃l(a+∆a, b, c)− H̃l(a, b, c) =
1

2
∆a+

∆t

2∆xl

[fl(a+∆a)− fl(a)] . (27)

This expression is not positive or equal to zero without additional require-
ments.
To condition (19):

H̃l(a, b, c+∆c)− H̃l(a, b, c) =
1

2
∆c−

∆t

2∆xl

[fl(c+∆c)− fl(c)] . (28)

Again this expression is not automatically positive or equal to zero. The re-
quirements (27) and (28) can be combined to

|fl(x+∆x)− fl(x)|

∆xl

≤
∆xl

∆t
∀ l = 1, . . . , d and ∀∆x ≥ 0 .

Therefore, the implicit Lax-Friedrichs scheme is monotone only for Lipschitz-
continuous flux functions with Lipschitz constants Ll ≤ (∆xl/∆t). Note that
this can also be read as a condition on the time step size which does not
depend on the dimension, since each single one of the 2l conditions (18) and
(19) has to be satisfied and no coupling is involved. This is quite surprising (a)
because it is normally suggested that the numerical characteristics include the
whole domain in the case of implicit methods, and (b) since no dimensional
influence on the monotonicity property is obtained. In order to illuminate point
(a), we briefly review the discussion of the situation for the case of the linear
advection equation without sources in one dimension which is done in [5] in
much more detail. With respect to point (b), we demonstrate numerically a
similar behavior in two dimensions in order to illustrate the noted missing
dimensional dependence of the implicit monotonicity criterion.
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In the case of a linear flux f(u) = vu, the nonlinear system defined by the
implicit Lax-Friedrichs scheme degenerates to a linear system with λ = ∆t/∆x
given through

[

−
1

2
− v

λ

2

]

un+1
j−1 + 2un+1

j +

[

−
1

2
+ v

λ

2

]

un+1
j+1 = un

j . (29)

We investigate the structure of the tridiagonal matrix A = (aij) defined by
(29). Therefore, let v be positive with v > (1/λ) so that the formal mono-
tonicity property of the scheme is lost. Then the entries in the lower diagonal
ai+1,i always take on negative values while the entries in the upper diagonal
ai,i+1 are always positive.

We at first eliminate the entries in the lower diagonal ai+1,i. The diagonal
entries of the matrix have to be modified accordingly, i.e. the diagonal entry
in the i-th row is modified via

anewii = aoldii −
ai,i−1

ai−1,i−1
ai−1,i .

Thereby, note that we always have the situation

ai,i−1 < 0, ai−1,i−1 > 0 , and ai−1,i > 0 ,

so that anewii > aoldii is always satisfied. Since the right hand side (bi) of the
investigated system incorporating the given data is modified via

bi = un
i −

ai,i−1

ai−1,i−1
bi−1 ,

data sets with un
k ≥ 0 ∀k imply only positive possible changes in the values bi.

In particular, the values in the upper diagonal ai,i+1 remain unchanged and
positive.

We now investigate what happens at a jump in given data un
k from values 0

to 1 when backward elimination is applied in order to solve the system. There-
fore, we fix un

j := 0∀j < i and un
j := 1∀j ≥ i. By the described procedure, it

is clear that the corresponding entries on the right hand side also show a jump
from 0 to 1 after the modification due to elimination of the lower diagonal
since bi−1 = un

i−1 = 0, so that no positive update in bi takes place. Backward
elimination results in

un+1
i−1 =

1

anewi−1,i−1
︸ ︷︷ ︸

>0

(
un
i−1

︸︷︷︸

=0

− ai−1,i
︸ ︷︷ ︸

>0

un
i

︸︷︷︸

=1

)
< 0 ,

so that the monotonicity is violated, as expected. The violation of the mono-
tonicity property can also be observed at jumps from high to lower values
within given data.

Concerning the two-dimensional situation, we consider the linear advection
equation

∂

∂t
u(x, y, t) +

∂

∂x
(vu(x, y, t)) +

∂

∂y
(vu(x, y, t)) = 0
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with grid parameters ∆x = ∆y = 0.1 and the initial condition

u(x, y, 0) =

{
1 for (x, y) ∈ [0, 1]× [0, 1] ,
0 else.

The monotonicity condition yields that the chosen time step size ∆t = 0.1 is
the largest one allowed for v = 1.0 in order to preserve the monotonicity of
the scheme, the same as would be in the one-dimensional case. See Fig. 1 for
a visualization of the monotone and monotonicity-violating property of the
method. Figure 2 gives a more detailed picture of the latter case.

0

0.2

0.4

z

0.6

0.8

1

x y

0

-0.5 2

1.5

1

0.5

0

-0.5

1

1.5

2

0.5
x y

0

0.2

0.4

z

0.6

0.8

1

0

-0.5

0.51

0.5

1.5

2 -0.5

0

1

1.5

2

Fig. 1 Numerical solutions of the linear two-dimensional problem after one time step with
v = 1 (left) satisfying the monotonicity condition and with v = 1.5 (right), resulting in a
monotonicity violation as in the one-dimensional case. The same behavior also occurs for
velocities 1 < v < 1.5, resulting in much less amplitudes of the violations.
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Fig. 2 Plots showing in detail the monotonicity violation in the case ∆t = ∆x = ∆y = 0.1
and v = 1.5, obtained after one time step with the implicit Lax-Friedrichs scheme: The
maximum of 1.0 and the numerical solution (left) and the minimum of 0.0 and the numerical
solution (right).
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4.3 An implicit Godunov-type method

In the scalar case, a closed form of the exact solution of a Riemann-problem
was described by Osher [20]. Using this, a numerical scheme can be defined
via the d numerical flux functions

gGl (v, w) =

{
minv≤u≤w fl(u) : v ≤ w ,
maxw≤u≤v fl(u) : v > w .

Since the relative values of the test variables have to be compared within the
scheme, diversions by cases have to be employed.
To condition (18):
Generally, for l = 1, . . . , d,

H̃l(a+∆a, b, c)− H̃l(a, b, c) =
∆t

∆xl

[
gGl (a+∆a, b)− gGl (a, b)

]

holds. Since only the values b, a and a+∆a are of importance, it is necessary
to investigate three cases for each l ∈ d.

1. Case: b ≤ a ≤ a+∆a

∆t

∆xl

[
gGl (a+∆a, b)−gGl (a, b)

]
=

∆t

∆xl

[

max
b≤u≤a+∆a

fl(u)− max
b≤u≤a

fl(u)

]

≥ 0

2. Case: a ≤ b ≤ a+∆a

∆t

∆xl

[
gGl (a+∆a, b)−gGl (a, b)

]
=

∆t

∆xl

[

max
b≤u≤a+∆a

fl(u)− min
a≤u≤b

fl(u)

]

≥ 0

3. Case: a ≤ a+∆a ≤ b

∆t

∆xl

[
gGl (a+∆a, b)−gGl (a, b)

]
=

∆t

∆xl

[

min
a+∆a≤u≤b

fl(u)− min
a≤u≤b

fl(u)

]

≥ 0

Thus, the validity of the condition (18) is guaranteed without any additional
condition on the flux function. This can be verified analogously for condition
(19), so that the investigated Godunov-type scheme is monotone for general
continuous flux functions.

4.4 Convergence

Within this section, we prove convergence of the mentioned schemes under
the assumption that the conditions for monotonicity are fulfilled. We do this
in some detail for the implicit upwind method, since this is demonstrated
in the easiest fashion, and we refer to the differences concerning the proofs of
convergence with respect to the other methods afterwards. The same holds true
with respect to the type of sources employed in Scenario 2. Since part of the
convergence proof is technically identical to the proofs in the one-dimensional
case without sources described in [5], we refer to that work for more details.
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The basic idea of the convergence proofs is the following. Corresponding to
sequences ∆xk

l ↓ 0 for k → ∞, l ∈ d, we construct a monotonically growing se-
quence of discrete initial data. Then by the monotonicity of the method we get
a monotonically growing sequence of numerical solutions. Since we multiply
the initial function u0 with an arbitrarily chosen but fixed test function with
compact support, we only have to consider u0 over a finite domain. Because of
the assumption u0 ∈ L∞ and since we have L∞-Stability, the corresponding
function sequence is integrable and bounded from above. Then we can use the
well-known theorem of monotone convergence of Beppo Levi to show conver-
gence (almost everywhere) to a limit function. More formally, we state the
following

Theorem 4 Let u0(x) be in Lloc
∞

(
R

d; R
)
. Consider a sequence of nested grids

indexed by k = 1, 2, . . ., with mesh parameters ∆tk ↓ 0 and ∆xk
l ↓ 0, l =

1, . . . , d, as k → ∞, and let uk(x, t) denote the step function obtained via the
numerical approximation by a consistent, conservative and monotone scheme
in the form of the discussed methods. Then uk(x, t) converges to the unique
entropy solution of the given conservation law as k → ∞.

Proof At first, the convergence to a weak solution of the conservation law
is established, followed by the verification that this weak solution is the en-
tropy solution. For brevity of the notation, we omit the arguments (x, t) when
appropriate.

We employ sequences ∆tk ↓ 0 and ∆xk
l ↓ 0, assuming that the resulting

grids are nested in order to compare data sets of values, i.e. refined grids always
inherit cell borders.

The most important technical detail is the special discretization of the
initial condition u0 ∈ Lloc

∞

(
R

d; R
)
. After a suitable modification on a set of

Lebesgue measure zero, the initial condition is discretized on cell j ∈ J , i.e.
for

x ∈
(
(j1 − 1)∆x0

1, j1∆x0
1

]
× . . .×

(
(jd − 1)∆x0

d, jd∆x0
d

]
,

by
u0
j := inf

x in cell j

u0(x) . (30)

Corresponding to the initial data we also define a piecewise continuous function

uk(x, 0) := u0
j , x in cell j . (31)

It is a simple matter of classical analysis to verify that the discretization
(30) together with (31) gives on any compact spatial domain a monotonically
growing function sequence with

lim
k→∞

uk(x, 0) = u0(x) almost everywhere (32)

by application of the theorem of monotone convergence. In the classical fashion
using point values, we extract discrete test elements φ0

j out of a given test

function φ ∈ C∞
0

(
R

d+1; R
)
. Additionally, we define for n ≥ 1 the step function

uk(x, t) = un
j , x in cell j, tn−1 < t ≤ tn .
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In the following, let the test function φ be chosen arbitrarily but fixed.
Multiplication of the implicit upwind scheme (26) with ∆tk

∏d
l=1 ∆xk

l as
well as with the discrete test element φn+1

j , summation over the spatial indices
j ∈ J and the temporal indices n ≥ 0, and finally summation by parts yields

∆tk
d∏

l=1

∆xk
l







∑

j∈J

∑

n≥0

[

un
j

φn+1
j − φn

j

∆tk
+

d∑

l=1

fl(u
n+1
j )

φn+1
j+δl − φn+1

j

∆xk
l

]






= −
d∏

l=1

∆xk
l

∑

j∈J

u0
jφ

0
j +∆tk

d∏

l=1

∆xk
l

∑

j∈J

qn+1
j φn+1

j . (33)

By the definition of the introduced step functions, (33) is equivalent to

∫

R+

∫

Rd

[

uk(x, t)
φk(x, t+∆tk)− φk(x, t)

∆tk

+

d∑

l=1

fl(uk(x, t+∆tk))
φk(x+∆xk

l , t+∆tk)− φk(x, t+∆tk)

∆xk
l

]

dx dt

= −

∫

Rd

uk(x, 0)φk(x, 0) dx

+

∫

R+

∫

Rd

qk(x, t+∆tk)φk(x, t+∆tk) dx dt . (34)

We now prove convergence of (34) to the form which implies that u is a weak
solution of the original problem, see (7).

We first investigate the right hand side of (34). Set ∆̃ := maxl∈d ∆x0
l and

let

K :=
{

(x, t) | ∃(y, t) ∈ supp(φ) : t = 0 & yl − ∆̃ ≤ xl ≤ yl + ∆̃ ∀ l ∈ d
}

.

By construction, K is compact and gives the largest possible spatial domain
where non-zero discrete initial data may occur. Adding zeroes, we now cast
the problem into a more suitable form, namely

∫

Rd

uk(x, 0)φk(x, 0) dx =

∫

K

u0(x)φ(x, 0) dx

+

∫

K

uk(x, 0) [φk(x, 0)− φ(x, 0)] dx

+

∫

K

[uk(x, 0)− u0(x)]φ(x, 0) dx . (35)

Because of u0 ∈ L∞(Rd; R) and by our construction, we can estimate the
absolute value of the second right hand side term in (35) by the help of a
constant Mu < ∞:
∣
∣
∣
∣

∫

K

uk(x, 0) [φk(x, 0)− φ(x, 0)] dx

∣
∣
∣
∣
≤ Mu|K| sup

x∈K

|φk(x, 0)− φ(x, 0)| . (36)
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Since φ is a smooth test function, it is a simple but technical exercise to show

‖φk(x, 0)− φ(x, 0)‖∞ → 0 for k → ∞ . (37)

By (36) and (37), the investigated term tends to zero with k → ∞. Since φ is
continuous and since uk(x, 0) approaches u0(x) from below by construction,
we can estimate the absolute of the third right hand side term in (35) with
the help of a constant Mφ < ∞ by

∣
∣
∣
∣

∫

K

[uk(x, 0)− u0(x)]φ(x, 0) dx

∣
∣
∣
∣
≤ Mφ

∫

K

u0(x)− uk(x, 0) dx .

The theorem of monotone convergence implies that
∫

K

u0(x)− uk(x, 0) dx

vanishes in the limit for k → ∞, i.e. the corresponding term in (35) goes to
zero for k → ∞. To condense these results, we obtain

lim
k→∞

∫

Rd

uk(x, 0)φk(x, 0) dx =

∫

Rd

u0(x)φ(x, 0) dx .

It remains to show
∫

R+

∫

Rd

qk(x, t+∆tk)φk(x, t+∆tk) dx dt
k→∞
−→

∫

R+

∫

Rd

q(x, t)φ(x, t) dx dt .

This result can easily be achieved by analogously introducing a compact do-
main S ⊂ R

d including the support of φ in space and time, setting for n ≥ 1
(n = 0 is not relevant since q(·, 0) ≡ 0)

qnj := inf
(x,t) with x in cell j and t in (tn−∆t0,tn]

q(x, t)

and using a similar manipulation as for the terms involving u0.
Concerning the left hand side of (35), adding zeroes and using the attributes

of test functions together with the L∞-stability of uk yields that we finally have
to show

lim
k→∞

∫

S

∣
∣u(x, t)− uk(x, t)

∣
∣ |φt(x, t)| dx dt

k→∞
−→ 0 (38)

and also for all l ∈ d

lim
k→∞

∫

S

∣
∣fl(u(x, t))− fl(uk(x, t+∆tk))

∣
∣

∣
∣
∣
∣

∂

∂xl

φ(x, t)

∣
∣
∣
∣
dxdt

k→∞
−→ 0 (39)

in order to prove convergence to a weak solution. Since φt is continuous on
S, we can estimate |φt| in (38) by a constant Mt < ∞. Since uk(x, t) grows
monotonically with k → ∞ in the sense of pointwise comparison, and since
it is positive and bounded from above because of u0 ∈ L∞(S) and the mono-
tonicity of the method, the function sequence (uk(x, t))k∈N

converges almost
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everywhere to an integrable limit function on S by the theorem of monotone
convergence due to Levi. We set

u(x, t) := lim
k→∞

uk(x, t) .

Introducing exactly this limit function as the function u(x, t) used up to now,
the corresponding term in (38) becomes zero in the limit:

lim
k→∞

∫

S

∣
∣u(x, t)− uk(x, t)

∣
∣ |φt(x, t)| dx dt

≤ Mt

∫

S

u(x, t)− lim
k→∞

uk(x, t) dx dt = 0 .

Note that the pointwise convergence uk → u almost everywhere is now estab-
lished and can be used in the following proofs. For proving (39), we need some
further simple manipulations. We use again the continuity of the derivatives
of φ to introduce constants M l

x < ∞ to obtain
∫

S

∣
∣fl(u(x, t))− fl(uk(x, t+∆tk))

∣
∣

∣
∣
∣
∣

∂

∂xl

φ(x, t)

∣
∣
∣
∣
dx dt ≤

M l
x

∫

S

|fl(uk(x, t))− fl(u(x, t))| dx dt

+M l
x

∫

S

∣
∣fl(uk(x, t+∆tk))− fl(uk(x, t))

∣
∣ dx dt (40)

for all l ∈ d. We now discuss the first right hand side term in (40). Since by
construction uk and u are in L∞(S), we can estimate every

∣
∣fl(uk(x, t+∆tk))− fl(uk(x, t))

∣
∣

over S from above by a constant M l
f < ∞ because of the continuity of the fl

on the compact set of possible values. Then the functions

M l
f (x, t) :=

{
M l

f , (x, t) ∈ S

0 , otherwise
,

are in L1(R
d × R+; R) and dominate |fl(uk(x, t))− fl(u(x, t))| for all l ∈ d

and all k. Because of the established pointwise convergence uk → u a.e., we
can apply the theorem of dominated convergence by Lebesgue to obtain for
all l

lim
k→∞

Mx

∫

S

|fl(uk(x, t))− fl(u(x, t))| dx dt = 0 . (41)

Now we discuss the second right hand side term in (40). Since by construction
uk is a step function with finite values on the compact domain S, uk is in
L1(S). Since the fl are continuous, also fl ◦uk are in L1(S). By the continuity
in the mean of L1-functions, there exist δl(ǫ) for all ǫ > 0 with

∫

S

∣
∣fl(uk(x, t+∆tk))− fl(uk(x, t))

∣
∣ dx dt < ǫ ,
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if ∆tk < δl(ǫ). Since ∆tk ↓ 0 for k → ∞, ǫ can be chosen arbitrarily small, i.e.

Mx

∫

S

∣
∣fl(uk(x, t+∆tk))− fl(uk(x, t))

∣
∣ dx dt → 0 for k → ∞ (42)

holds for all l ∈ d. By (41) and (42) the assertion in (39) is proven. Since
the test element φ was chosen arbitrarily, convergence to a weak solution is
established.

We have now to show that exactly this weak solution is the unique entropy
solution in the sense of Kružkov. Therefore, we derive in a similar fashion as
in the derivation of (33) the weak form of the discrete entropy condition (21)
connected with the implicit upwind scheme using Lemma 1 and Theorem 2.
It reads

−∆tk
d∏

l=1

∆xk
l

∑

j∈J

|u0
j − k|φ0

j

−∆tk
d∏

l=1

∆xk
l

∑

j∈J

∑

n≥0

sgn
(
un+1
j − k

)
qn+1
j φn+1

j

≤ ∆tk
d∏

l=1

∆xk
l

∑

j∈J

∑

n≥0

[

|un
j − k|

φn+1
j − φn

j

∆tk

+sgn
(
un+1
j − k

)
d∑

l=1

{

[
fl(u

n+1
j )− fl(k)

] φn+1
j+1 − φn+1

j

∆xk
l

}]

. (43)

Using the established convergence uk → u a.e. of the function sequence gene-
rated by the numerical method for ∆tk ↓ 0 and ∆xk

l ↓ 0 for all l ∈ d, we now
prove convergence of (43) towards the form of the entropy condition due to
Kružkov (8). Therefore, we have to consider arbitrarily chosen but fixed test
elements composed of a test function φ with φ ≥ 0, φ ∈ C∞

0 (Rd+1; R), and a
test number k ∈ R.

Using the same notation and applying a similar procedure as in the case
of the convergence proof to a weak solution, we first want to prove

lim
k→∞

Mφ

∫

K

∣
∣|uk(x, 0)− k| − |u0(x)− k|

∣
∣ dx = 0 . (44)

Since k is fixed and uk(x, 0) and u0 bounded, one can find a constant function
over the compact interval K which dominates the integrand for all k. Then
(44) follows by the use of the already established convergence uk(x, 0) → u0(x)
a.e. and the theorem of dominated convergence by Lebesgue. We also have to
treat

lim
k→∞

∫

R+

∫

Rd

sgn
(
uk(x, t+∆tk)− k

)
qk(x, t+∆tk)φ(x, t+∆tk) dx dt .

Therefore, we expand the factor φ(x, t+∆tk) by adding zeroes in the form

φ(x, t+∆tk) = φ(x, t+∆tk)− φ(x, t) + φ(x, t) .
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Convergence of the integrals involving the factor φ(x, t +∆tk) − φ(x, t) tend
to zero. This follows by estimating sgn, uk and qk from above and using the
usual properties of test functions. In a similar fashion, we expand the fac-
tor sgn

(
uk(x, t+∆tk)− k

)
, adding zero in the form −sgn (uk(x, t)− k) +

sgn (uk(x, t)− k). The proof that the integrals involving the expression of the
form sgn

(
uk(x, t+∆tk)− k

)
− sgn (uk(x, t)− k) vanish follows from the con-

tinuity in the mean of L1-functions. Again similarly, we expand in the form
qk(x, t + ∆tk) = qk(x, t + ∆tk) − q(x, t + ∆tk) + q(x, t + ∆tk) and use the
concept of monotone convergence due to Beppo Levi to obtain convergence to
zero of the integrals involving qk(x, t+∆tk)−q(x, t+∆tk). Lastly, the proof of
convergence of q(x, t+∆tk) to q(x, t) under the integral follows from the con-
tinuity in the mean of L1-functions. The technical details only require to take
all expansions obtained by taking suitable zeroes into account and eliminating
all integrals which involve discrete notions. The other terms left to investigate
are

∫

S

|uk(x, t)− k|φt(x, t) dx dt and

∫

S

d∑

l=1

sgn
[
uk(x, t+∆tk)− k

] [
fl(uk(x, t+∆tk))− fl(k)

] ∂

∂xl

φ(x, t) dx dt .

The procedure is the same in both cases. Since the occurring derivatives of φ
are continuous, we can estimate these over the compact domain S by finite
constants. Since k is a fixed value (and so is fl(k) for all l ∈ d), since uk(x, t)
is bounded and because the fl are continuous over the bounded interval of
possible values of uk (due to the established L∞-stability), we can also give
constants which estimate all the expressions involving uk from above. Using
the product of these finite constants as dominating function over S as well as
uk → u a.e., we employ the theorem of dominated convergence to receive the
desired result for the implicit upwind scheme.

In the case of the implicit Lax-Friedrichs method, we have to assume Lip-
schitz continuity with a Lipschitz constant L ≤ 1/λ of the flux functions so
that the method is monotone. In comparison to the implicit upwind method,
the difference in the corresponding weak forms are made up from

−
∆tk
2

∫

S

uk(x, t+∆tk)φ̂ dx dt and −
∆tk
2

∫

S

∣
∣uk(x, t+∆tk)− k

∣
∣ φ̂ dx dt ,

respectively. Thereby, φ̂ converges in the L∞-Norm to ∂2
x2
l

φ(x, t) which is con-

tinuous since φ ∈ C∞
0 (Rd+1; R). Thus, the corresponding term can be esti-

mated from above by a constant over the compact domain S. Since k is fixed
and uk(x, t) is bounded as usual, both expressions vanish with ∆tk ↓ 0.

With respect to the described implicit Godunov-type method, we use a
similar procedure as in the case of the implicit Lax-Friedrichs methods, namely
to write down the differences in the weak forms to the case of the implicit
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upwind method. These are made up from

{[
gGl (u

n+1
j ∨ k, un+1

j+δl ∨ k)− gGl (u
n+1
j ∧ k, un+1

j+δl ∧ k)
]

−sgn
(
un+1
j − k

) [
fl(u

n+1
j )− fl(k)

]}φn+1
j+δl − φn+1

j

∆xk
l

(45)

and
[
gGl (u

n+1
j , un+1

j+1 )− fl(u
n+1
j )

]φn+1
j+δl − φn+1

j

∆xk
l

. (46)

Since gG is continuous in the components and uk(x, t) ∈ L1(S), the gGl ◦ uk

are also in L1(S). After introducing step functions as usual, the expressions
incorporating gGl from (45) give values fl(ξl) with

ξl ∈
[
uk(x, t+∆tk), uk(x+∆xk

l , t+∆tk)
]

or ξl ∈
[
uk(x+∆xk

l , t+∆tk), uk(x, t+∆tk)
]
,

respectively. The integrals over the terms corresponding to (45) then go to
zero with k → ∞ because of the continuity in the mean of gGl ◦ uk. The
idea for proving convergence to zero concerning the integral of the expressions
corresponding to (46) is the same.

Concerning Scenario 2, the described strategy is fully transferable by em-
ploying accordingly the notions developed in section 3.

5 Numerical tests

In order to show the applicability of the developed notions, we investigate
numerically a number of test cases which were employed within the literature
in various contexts. In contrast to the cited examples from [21,12] we do not
employ any further manipulations of the problem or on the numerical side, we
simply rely on the straightforward application of the implicit Godunov-type
method in all cases.

We remark that the notions we developed reduce in the one-dimensional
case without sources to the notions described within [4,5]. In that works,
especially the applicability of implicit schemes with respect to a conservation
law given in [15] was shown where the solution features a rarefaction wave
extending in an arbitrarily small time step to infinity. Thus, the applicability
of the described concept is already established in the case without sources,
where the flux is merely continuous and where a meaningful CFL-condition
does not exist. With the numerical tests documented in this section, we focus
on the theoretical extensions developed in this paper.

First, we employ a one-dimensional conservation law featuring as a partic-
ular problem a point source depending on space and time. This test case was
used in [21] to show experimentally convergence to the entropy solution. In
contrast to the scheme used in their work, for our scheme convergence to the
entropy solution is guaranteed.
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At second, we consider a couple of model problems featuring spatial de-
pendent sources having the form of the derivative of certain functions. These
model problems were used in [12] in order to show numerically convergence
to steady state solutions featuring various difficulties which is in contrast to
the first unsteady example. Moreover, since we use the described Godunov-
type scheme, we do not rely on a CFL-like condition as in [12] which greatly
restricts the time step size, an annoying aspect in steady state calculations.
Note also that we simply employ the described implicit method without any
further improvements as done with the explicit method employed in [12] for
which convergence was not guaranteed.

While the first two examples could be identified as belonging to Scenario
1, the third test case refers to Scenario 2. It consists of a one-dimensional
model problem featuring a parameter dependent source term depending also
in a nonlinear way on the solution. This model problem was used by LeVeque
and Yee [18] to illuminate numerical difficulties in the case of stiffness.

As fourth and last example, we show numerical results of a two-dimensional
problem used in [11] which exhibits all principal difficulties encountered when
dealing with hyperbolic equations. As in the second example, the implicitness
of our methods is advantageous in order to calculate the steady state solution.

In all examples, nonlinear systems of equations of the form F (x) = 0 with
F (x) : Rn → R

m for some n,m ≥ 1 arise which have been solved numerically
with an iterative solver. Precisely, we used the Matlab subroutine fsolve of the
optimization toolbox (www.mathworks.com/help/optim/ug/fsolve.html). By
default the Powell’s dogleg algorithm (a trust-region method) is used (see
www.mathworks.com/help/optim/ug/equation-solving-algorithms.html for a
detailed description of how this method are defined and how they work).

5.1 Example 1

The one-dimensional scalar conservation law under consideration is

∂

∂t
u(x, t) +

∂

∂x
u(x, t) = sin(πt)δ(x− 0.1) , x ∈ (0, 1) , t > 0 ,

with u0(x) = u(x, 0) = 0 ∀x ∈ (0, 1) and u(0, t) = 0 ∀t ≥ 0 .

The exact solution is given in [21] and reads

u(x, t) =

{
u0(x− t) : x < 0.1 or x ≥ 0.1 + t ,

sin (π(0.1 + t− x)) + u0(x− t) : 0.1 ≤ x < 0.1 + t .

By Fig. 3, we can compare the exact and numerical solutions obtained with
the implicit upwind method in the same situations as displayed in [21], using
also exactly the same grid parameters. They used ∆x = ∆t = 1/20 and
∆x = ∆t = 1/40 in the three moments t = 1/4, t = 1/2, and t = 1.

Relating to the method used in [21], our scheme is overall much more
viscous. This is as expected since Santos and Oliveira especially sought a good
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Fig. 3 The columns show the numerical solutions (dashed lines) in comparison with the
exact solution (continuous lines). The situations displayed in the right column are obtained
using a grid twice as fine as in the left column.

accuracy of their method. We also observe experimentally convergence to the
correct solution by our method, documented by the bottom pictures within
Fig. 4 showing results of analogous computations with a more refined grid.

5.2 Example 2

The conservation law generally under consideration is

∂

∂t
u(x, t) +

∂

∂x

(
1

2
u(x, t)2

)

= qx(x) , x ∈ R , t > 0 ,
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Fig. 4 The first and third state from Fig. 3 revisited, this time obtained via numerical
approximation using a grid ten times as fine as in the left column of Fig. 3.

which is used featuring different sources and initial conditions resulting in
various difficulties. The source terms in use are

q(x) =







0 , x < −1 ,
cos2 (πx/2) , −1 ≤ x ≤ 1 ,

0 , 1 < x ,
& q(x) =







0 , x < −1 ,
− cos2 (πx/2) , −1 ≤ x ≤ 1 ,

0 , 1 < x .

The initial conditions in use are

u(x, 0+) = 0, −∞ < x < ∞ , u(x, 0+) =







0 , x < −1 ,
1 , −1 ≤ x ≤ 1 ,
0 , 1 < x ,

and

u(x, 0+) =







0 , x < −1 ,
−1 , −1 ≤ x ≤ 1 ,
0 , 1 < x .

The following four experiments are analogous to the ones in [12], using
exactly the same grid parameters as initially in [12] where later on spatial
regridding was used in order to obtain sharp shock profiles. We use the implicit
Lax-Friedrichs method with δx = 0.025 and δt = 0.0125.

In the Figs. 5 and 6, we show in all test cases from top to bottom the nu-
merical solutions obtained by using our method at times t = 0.2, 0.5, 1.0 and
3.0 (line featuring small circles) together with the stationary solution (contin-
uous line). Thereby, different experiments correspond to different columns of
pictures.

Concerning the first experiment, the numerical solution is almost identical
to the exact one except at the point x = 0.0 where a grid point is located
exactly on the shock front. With respect to the other experiments, the numer-
ical solutions exhibit slightly smeared shocks while they are otherwise quite
accurate. Comparing with the numerical results shown in [12], not employing
a regridding procedure results in slightly smeared shocks. Further numerical
experiments have shown that we can employ much larger time steps — usually
of about 20–30 times the one used for the presented experiments — without
degrading our numerical solution.
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Fig. 5 Experiments one (left) and two (right).

5.3 Example 3

The conservation law under consideration is

∂

∂t
u(x, t) +

∂

∂x
u(x, t) = −µu(x, t)

(
u(x, t)− 1

)
(

u(x, t)−
1

2

)
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Fig. 6 Experiments three (left) and four (right).

which exhibits a nonlinear source term with an increasingly stiff behavior for
µ growing large.

Our numerical investigations are completely analogous to the ones in [18].
The experiments consist of the numerical solution of a Riemann problem whose
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exact solution features a shock front moving from x = 0.3 to x = 0.6 after
a couple of time steps, see Fig. 7. For small and medium µ, the numerical
solution shows the correct behavior incorporating numerical viscosity; note
the sharpening and slight translation of the shock approximation for µ = 100,
an effect of the increasing stiffness of the source term. For µ = 1000 the usual
problem is faced, see [18] for details. This experiment shows that although the
discussed methods are generally capable to deal with non-linear sources, they
are not recommended without modification for stiff problems even though they
are fully implicit. Of course, grid refinement results in the approximation of
the correct solution as expected.
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Fig. 7 Numerical solutions of a conservation law exhibiting a nonlinear source term with
an increasingly stiff behavior for a large parameter µ (dashed lines) compared with the
exact solution (continuous lines) with a step function as the initial condition. The pictures
correspond from left to right and top to bottom to the choices µ = 1, 10, 100, 1000.

The reason why we show the four graphs in Fig. 7 is to directly compare
them with [18, Figure 2]. We are able to obtain well-behaved solutions whereas
the method in [18] uses limiter to avoid oscillations close to the discontinuity
at x = 0.6.

6 Summary and conclusive remarks

In this paper, we have introduced a new concept for implicit methods for scalar
conservation laws in one or more spatial dimensions which may also include
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source terms of different type. We developed implicit notions that are centered
around a monotonicity criterion and show the relation between a numerical
scheme and a discrete entropy inequality. We investigate in detail three im-
plicit methods and give a convergence proof. Hence, we extend the rigorously
verified range of applicability of those three implicit numerical methods. By
numerical experiments we have shown the validity and usefulness of our the-
oretical results.
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