000872663 001__ 872663
000872663 005__ 20240619083558.0
000872663 0247_ $$2doi$$a10.1103/PhysRevLett.123.218003
000872663 0247_ $$2ISSN$$a0031-9007
000872663 0247_ $$2ISSN$$a1079-7114
000872663 0247_ $$2ISSN$$a1092-0145
000872663 0247_ $$2Handle$$a2128/23842
000872663 0247_ $$2pmid$$apmid:31809142
000872663 0247_ $$2WOS$$aWOS:000498063400009
000872663 037__ $$aFZJ-2020-00154
000872663 082__ $$a530
000872663 1001_ $$00000-0002-6211-7883$$aHendricks, Jan$$b0
000872663 245__ $$aNonmonotonic Stress Relaxation after Cessation of Steady Shear Flow in Supramolecular Assemblies
000872663 260__ $$aCollege Park, Md.$$bAPS$$c2019
000872663 3367_ $$2DRIVER$$aarticle
000872663 3367_ $$2DataCite$$aOutput Types/Journal article
000872663 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579003767_28617
000872663 3367_ $$2BibTeX$$aARTICLE
000872663 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872663 3367_ $$00$$2EndNote$$aJournal Article
000872663 520__ $$aStress relaxation upon cessation of shear flow is known to be described by single-mode or multimode monotonic exponential decays. This is considered to be ubiquitous in nature. However, we found that, in some cases, the relaxation becomes anomalous in that an increase in the relaxing stress is observed. Those observations were made for physicochemically very different systems, having in common, however, the presence of self-associating units generating structures at large length scales. The nonmonotonic stress relaxation can be described phenomenologically by a generic model based on a redistribution of energy after the flow has stopped. When broken bonds are reestablished after flow cessation, the released energy is partly used to locally increase the elastic energy by the formation of deformed domains. If shear has induced order such that these elastic domains are partly aligned, the reestablishing of bonds gives rise to an increase of the overall stress.
000872663 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000872663 588__ $$aDataset connected to CrossRef
000872663 7001_ $$0P:(DE-HGF)0$$aLouhichi, Ameur$$b1
000872663 7001_ $$0P:(DE-HGF)0$$aMetri, Vishal$$b2
000872663 7001_ $$0P:(DE-HGF)0$$aFournier, Rémi$$b3
000872663 7001_ $$00000-0003-0163-485X$$aReddy, Naveen$$b4
000872663 7001_ $$0P:(DE-HGF)0$$aBouteiller, Laurent$$b5
000872663 7001_ $$00000-0002-0869-6730$$aCloitre, Michel$$b6
000872663 7001_ $$00000-0002-9253-9008$$aClasen, Christian$$b7
000872663 7001_ $$00000-0003-0866-1930$$aVlassopoulos, Dimitris$$b8
000872663 7001_ $$0P:(DE-Juel1)159317$$aBriels, Willem$$b9$$eCorresponding author$$ufzj
000872663 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.123.218003$$gVol. 123, no. 21, p. 218003$$n21$$p218003$$tPhysical review letters$$v123$$x1079-7114$$y2019
000872663 8564_ $$uhttps://juser.fz-juelich.de/record/872663/files/PhysRevLett.123.218003.pdf$$yOpenAccess
000872663 8564_ $$uhttps://juser.fz-juelich.de/record/872663/files/PhysRevLett.123.218003.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872663 909CO $$ooai:juser.fz-juelich.de:872663$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159317$$aForschungszentrum Jülich$$b9$$kFZJ
000872663 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000872663 9141_ $$y2019
000872663 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872663 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872663 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000872663 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2017
000872663 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2017
000872663 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872663 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872663 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872663 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872663 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872663 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872663 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872663 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872663 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000872663 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872663 920__ $$lyes
000872663 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie$$x0
000872663 9801_ $$aFullTexts
000872663 980__ $$ajournal
000872663 980__ $$aVDB
000872663 980__ $$aUNRESTRICTED
000872663 980__ $$aI:(DE-Juel1)ICS-3-20110106