000872666 001__ 872666
000872666 005__ 20240619091254.0
000872666 0247_ $$2doi$$a10.1021/acsami.9b14948
000872666 0247_ $$2ISSN$$a1944-8244
000872666 0247_ $$2ISSN$$a1944-8252
000872666 0247_ $$2pmid$$apmid:31752486
000872666 0247_ $$2WOS$$aWOS:000503918300006
000872666 037__ $$aFZJ-2020-00157
000872666 082__ $$a600
000872666 1001_ $$0P:(DE-Juel1)172817$$aHondrich, Timm J. J.$$b0$$eFirst author$$ufzj
000872666 245__ $$aMEA Recordings and Cell–Substrate Investigations with Plasmonic and Transparent, Tunable Holey Gold
000872666 260__ $$aWashington, DC$$bSoc.$$c2019
000872666 3367_ $$2DRIVER$$aarticle
000872666 3367_ $$2DataCite$$aOutput Types/Journal article
000872666 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581685411_5059
000872666 3367_ $$2BibTeX$$aARTICLE
000872666 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872666 3367_ $$00$$2EndNote$$aJournal Article
000872666 520__ $$aMicroelectrode arrays are widely used in different fields such as neurobiology or biomedicine to read out electrical signals from cells or biomolecules. One way to improve microelectrode applications is the development of novel electrode materials with enhanced or additional functionality. In this study, we fabricated macroelectrodes and microelectrode arrays containing gold penetrated by nanohole arrays as a conductive layer. We used this holey gold to optically excite surface plasmon polaritons, which lead to a strong increase in transparency, an effect that is further enhanced by the plasmon’s interaction with cell culture medium. By varying the nanohole diameter in finite-difference time domain simulations, we demonstrate that the transmission can be increased to above 70% with its peak at a wavelength depending on the holey gold’s lattice constant. Further, we demonstrate that the novel transparent microelectrode arrays are as suitable for recording cellular electrical activity as standard devices. Moreover, we prove using spectral measurements and finite-difference time domain simulations that plasmonically induced transmission peaks of holey gold red-shift upon sensing medium or cells in close vicinity (<30 nm) to the substrate. Thus, we establish plasmonic and transparent holey gold as a tunable material suitable for cellular electrical recordings and biosensing applications.
000872666 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000872666 588__ $$aDataset connected to CrossRef
000872666 7001_ $$0P:(DE-Juel1)172013$$aLenyk, Bohdan$$b1$$ufzj
000872666 7001_ $$0P:(DE-Juel1)165189$$aShokoohimehr, Pegah$$b2$$ufzj
000872666 7001_ $$0P:(DE-Juel1)159559$$aKireev, Dmitry$$b3
000872666 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b4$$ufzj
000872666 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b5
000872666 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b6$$eCorresponding author
000872666 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.9b14948$$gVol. 11, no. 50, p. 46451 - 46461$$n50$$p46451 - 46461$$tACS applied materials & interfaces$$v11$$x1944-8252$$y2019
000872666 8564_ $$uhttps://juser.fz-juelich.de/record/872666/files/acsami.9b14948.pdf$$yRestricted
000872666 8564_ $$uhttps://juser.fz-juelich.de/record/872666/files/acsami.9b14948.pdf?subformat=pdfa$$xpdfa$$yRestricted
000872666 909CO $$ooai:juser.fz-juelich.de:872666$$pVDB
000872666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172817$$aForschungszentrum Jülich$$b0$$kFZJ
000872666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172013$$aForschungszentrum Jülich$$b1$$kFZJ
000872666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165189$$aForschungszentrum Jülich$$b2$$kFZJ
000872666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b4$$kFZJ
000872666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b5$$kFZJ
000872666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b6$$kFZJ
000872666 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000872666 9141_ $$y2020
000872666 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872666 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872666 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872666 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2017
000872666 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872666 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872666 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872666 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872666 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872666 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872666 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2017
000872666 920__ $$lyes
000872666 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000872666 980__ $$ajournal
000872666 980__ $$aVDB
000872666 980__ $$aI:(DE-Juel1)ICS-8-20110106
000872666 980__ $$aUNRESTRICTED
000872666 981__ $$aI:(DE-Juel1)IBI-3-20200312