001     872666
005     20240619091254.0
024 7 _ |a 10.1021/acsami.9b14948
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a pmid:31752486
|2 pmid
024 7 _ |a WOS:000503918300006
|2 WOS
037 _ _ |a FZJ-2020-00157
082 _ _ |a 600
100 1 _ |a Hondrich, Timm J. J.
|0 P:(DE-Juel1)172817
|b 0
|e First author
|u fzj
245 _ _ |a MEA Recordings and Cell–Substrate Investigations with Plasmonic and Transparent, Tunable Holey Gold
260 _ _ |a Washington, DC
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581685411_5059
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microelectrode arrays are widely used in different fields such as neurobiology or biomedicine to read out electrical signals from cells or biomolecules. One way to improve microelectrode applications is the development of novel electrode materials with enhanced or additional functionality. In this study, we fabricated macroelectrodes and microelectrode arrays containing gold penetrated by nanohole arrays as a conductive layer. We used this holey gold to optically excite surface plasmon polaritons, which lead to a strong increase in transparency, an effect that is further enhanced by the plasmon’s interaction with cell culture medium. By varying the nanohole diameter in finite-difference time domain simulations, we demonstrate that the transmission can be increased to above 70% with its peak at a wavelength depending on the holey gold’s lattice constant. Further, we demonstrate that the novel transparent microelectrode arrays are as suitable for recording cellular electrical activity as standard devices. Moreover, we prove using spectral measurements and finite-difference time domain simulations that plasmonically induced transmission peaks of holey gold red-shift upon sensing medium or cells in close vicinity (<30 nm) to the substrate. Thus, we establish plasmonic and transparent holey gold as a tunable material suitable for cellular electrical recordings and biosensing applications.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lenyk, Bohdan
|0 P:(DE-Juel1)172013
|b 1
|u fzj
700 1 _ |a Shokoohimehr, Pegah
|0 P:(DE-Juel1)165189
|b 2
|u fzj
700 1 _ |a Kireev, Dmitry
|0 P:(DE-Juel1)159559
|b 3
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 4
|u fzj
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 5
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acsami.9b14948
|g Vol. 11, no. 50, p. 46451 - 46461
|0 PERI:(DE-600)2467494-1
|n 50
|p 46451 - 46461
|t ACS applied materials & interfaces
|v 11
|y 2019
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/872666/files/acsami.9b14948.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/872666/files/acsami.9b14948.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:872666
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172817
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172013
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165189
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128713
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21