000872667 001__ 872667
000872667 005__ 20240708132759.0
000872667 0247_ $$2doi$$a10.1016/j.mechrescom.2019.04.013
000872667 0247_ $$2ISSN$$a0093-6413
000872667 0247_ $$2ISSN$$a1873-3972
000872667 0247_ $$2Handle$$a2128/23950
000872667 0247_ $$2WOS$$aWOS:000475994600011
000872667 037__ $$aFZJ-2020-00158
000872667 082__ $$a670
000872667 1001_ $$0P:(DE-Juel1)168330$$aDuan, Shanghong$$b0
000872667 245__ $$aTopological optimization of patterned silicon anode by finite element analysis
000872667 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000872667 3367_ $$2DRIVER$$aarticle
000872667 3367_ $$2DataCite$$aOutput Types/Journal article
000872667 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579534374_30847
000872667 3367_ $$2BibTeX$$aARTICLE
000872667 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872667 3367_ $$00$$2EndNote$$aJournal Article
000872667 520__ $$aA silicon-based anode in lithium-ion battery exhibits several times higher gravimetric energy storage capacity compared to an established carbon-based anode. However, the cycling performance of the silicon anode is poor due to the extremely large volume variation during the intercalation of lithium ions. The micro-structuring of silicon facilitates cycling performance. In particular, patterned microstructures are discussed as a possible solution. The large volumetric change can be adopted in such structures by bending walls and rotation around fixed vertexes. Nevertheless, the cycling performance of known patterned anodes remains poor due to plastic deformations. In this paper, a new square-based-patterned silicon anode is proposed and analyzed using the finite element method. The maximal stress in the topologically optimized structure is below the yield strength of lithiated silicon. In contrast to known structures, the deformed pattern of the new structure is explicitly defined by its initial geometry. A similar modification of the honeycomb-based-patterned anode leads to a slightly larger bending stress, but still below the yield stress of lithiated silicon. The related pure elastic deformation behavior is favorable to a prolonged cycling life of the micro-structured silicon anode. The developed approach can be applied for analysis of other severely swelling metamaterials.
000872667 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000872667 588__ $$aDataset connected to CrossRef
000872667 7001_ $$0P:(DE-Juel1)164315$$aLaptev, Alexander M.$$b1$$eCorresponding author
000872667 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b2$$ufzj
000872667 7001_ $$0P:(DE-Juel1)173719$$aDanilov, Dmitri L.$$b3$$ufzj
000872667 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b4$$ufzj
000872667 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000872667 773__ $$0PERI:(DE-600)2013977-9$$a10.1016/j.mechrescom.2019.04.013$$gVol. 97, p. 63 - 69$$p63 - 69$$tMechanics research communications$$v97$$x0093-6413$$y2019
000872667 8564_ $$uhttps://juser.fz-juelich.de/record/872667/files/Mech%20Res%20Comm%2097%202019%2063%20-%2089%20Duan%20Laptev%20et%20al.pdf$$yPublished on 2019-04-23. Available in OpenAccess from 2021-04-23.
000872667 8564_ $$uhttps://juser.fz-juelich.de/record/872667/files/Mech%20Res%20Comm%2097%202019%2063%20-%2089%20Duan%20Laptev%20et%20al.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-04-23. Available in OpenAccess from 2021-04-23.
000872667 909CO $$ooai:juser.fz-juelich.de:872667$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168330$$aForschungszentrum Jülich$$b0$$kFZJ
000872667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164315$$aForschungszentrum Jülich$$b1$$kFZJ
000872667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich$$b2$$kFZJ
000872667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173719$$aForschungszentrum Jülich$$b3$$kFZJ
000872667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b4$$kFZJ
000872667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000872667 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000872667 9141_ $$y2019
000872667 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872667 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872667 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872667 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000872667 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMECH RES COMMUN : 2017
000872667 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872667 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872667 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872667 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872667 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872667 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872667 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872667 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000872667 9801_ $$aFullTexts
000872667 980__ $$ajournal
000872667 980__ $$aVDB
000872667 980__ $$aUNRESTRICTED
000872667 980__ $$aI:(DE-Juel1)IEK-1-20101013
000872667 981__ $$aI:(DE-Juel1)IMD-2-20101013