000872674 001__ 872674 000872674 005__ 20210130004248.0 000872674 037__ $$aFZJ-2020-00165 000872674 041__ $$aEnglish 000872674 1001_ $$0P:(DE-Juel1)166308$$aGvaramia, Manuchar$$b0 000872674 1112_ $$aMML Workshop at HZDR/Dresden$$cDresden$$d2019-02-13 - 2019-02-15$$wGermany 000872674 245__ $$aCapillary condensation in microemulsions 000872674 260__ $$c2019 000872674 3367_ $$033$$2EndNote$$aConference Paper 000872674 3367_ $$2BibTeX$$aINPROCEEDINGS 000872674 3367_ $$2DRIVER$$aconferenceObject 000872674 3367_ $$2ORCID$$aCONFERENCE_POSTER 000872674 3367_ $$2DataCite$$aOutput Types/Conference Poster 000872674 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1579789723_23631$$xOutreach 000872674 520__ $$aMicroemulsions are thermodynamically stable mixtures of oil and water that are mediated by the surfactant. Locally, there are oil and water domains that are observable by scattering experiments that are separated by the surfactant film. The domain sizes are usually a few nanometers and display shapes from spherical droplets over elongated droplets to the bicontinuous sponge phase. In the following we restrict ourselves to the bicontinuous microemulsion. When exposing the microemulsion to hydrophilic surfaces, a lamellar order is locally induced next to the interface. From spectroscopic measurements, we know that the membrane fluctuations in microemulsions are faster in the lamellar state. This is connected to the lubrication effect, because the lamellae can slide off easier and the motions are faster. In spectroscopic measurements with hydrophilic clay particles, we could show, that the platelet diameter causes a cutoff of the undulation modes, and larger platelets cause a better order with longer wavelength modes. The capillary condensation in bicontinuous microemulsions is expected to take place when two parallel surfaces are narrowed that result in a completely lamellar microemulsion (Figure). So far, all experiments stayed at relatively low clay concentrations, when the system is still liquid. The lamellar fraction in microemulsions with 1% clay is around 25% in volume. We now tried to observe the capillary condensation with increasing clay concentration using small angle neutron scattering (SANS) and neutron spin echo (NSE) spectroscopy. 000872674 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0 000872674 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1 000872674 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2 000872674 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0 000872674 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0 000872674 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0 000872674 7001_ $$0P:(DE-Juel1)166565$$aMangiapia, Gaetano$$b1 000872674 7001_ $$0P:(DE-HGF)0$$aFalus, Peter$$b2 000872674 7001_ $$0P:(DE-Juel1)130872$$aOhl, Michael$$b3$$ufzj 000872674 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b4$$ufzj 000872674 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b5$$eCorresponding author$$ufzj 000872674 909CO $$ooai:juser.fz-juelich.de:872674$$pVDB$$pVDB:MLZ 000872674 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130872$$aForschungszentrum Jülich$$b3$$kFZJ 000872674 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b4$$kFZJ 000872674 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b5$$kFZJ 000872674 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0 000872674 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1 000872674 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2 000872674 9141_ $$y2019 000872674 920__ $$lyes 000872674 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 000872674 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1 000872674 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2 000872674 980__ $$aposter 000872674 980__ $$aVDB 000872674 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000872674 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000872674 980__ $$aI:(DE-588b)4597118-3 000872674 980__ $$aUNRESTRICTED