000872680 001__ 872680
000872680 005__ 20210130004249.0
000872680 037__ $$aFZJ-2020-00171
000872680 041__ $$aEnglish
000872680 1001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b0$$eCorresponding author$$ufzj
000872680 1112_ $$a49th Conference of the German Colloid Society$$cStuttgart$$d2019-09-23 - 2019-09-25$$wGermany
000872680 245__ $$aMicroemulsions at planar surfaces with and without flow
000872680 260__ $$c2019
000872680 3367_ $$033$$2EndNote$$aConference Paper
000872680 3367_ $$2DataCite$$aOther
000872680 3367_ $$2BibTeX$$aINPROCEEDINGS
000872680 3367_ $$2DRIVER$$aconferenceObject
000872680 3367_ $$2ORCID$$aLECTURE_SPEECH
000872680 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1579789787_21215$$xOutreach
000872680 502__ $$cUniversity Stuttgart
000872680 520__ $$aMicroemulsions consist of water, oil and surfactant. Although thermodynamically stable, domains of pure water and oil are formed on nanometer length scales and a surfactant film in between that are ideally observable by small angle scattering experiments. The bicontinuous microemulsion displays a sponge structure that forms when equal volumes of water and oil are mixed. Being exposed to hydrophilic planar surfaces, a lamellar order is found in the vicinity to the solid-liquid interface. The typical depth of the lamellae is 40 to 60nm, i.e. 4 to 6 perfect domains [1,2], before the perforations describe the decay to the bicontinuous phase. The membrane modes observed by neutron spin echo spectroscopy under grazing incidence are faster at the interface than in bulk [3]. This is an evidence for the lubrication effect, a facilitated flow of the lamellae along the interface. Employing clay platelets, the same effect could be observed in a bulk sample [4]. Furthermore, at smaller platelet diameters, the favorable modes of the lamellae were cut, and the overall dynamics slowed down similar to the bulk. Thus, the perfection of modes at the interface is connected to the platelet diameter. At rather high flow rates, the perforated transition region was reduced in size, while the perfect lamellae were persistent [2]. In macroscopic rheology experiments (Fig.1 left), the microemulsion with rather large clay platelets showed evidence for the lubrication effect on macroscopic scales, while at lower clay dimensions the viscosity was extraordinarily high [5] (Fig.1 right). Motivated by this effect, the rheology of crude oils with large clay platelets showed decreased viscosities at low temperatures (below 0°C). The dynamic asymmetry of the aromatic and aliphatic portions and the lamellar alignment of the domains may explain these findings.
000872680 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000872680 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000872680 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000872680 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000872680 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000872680 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000872680 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x1
000872680 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x2
000872680 909CO $$ooai:juser.fz-juelich.de:872680$$pVDB$$pVDB:MLZ
000872680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b0$$kFZJ
000872680 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000872680 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000872680 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000872680 9141_ $$y2019
000872680 920__ $$lyes
000872680 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000872680 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000872680 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000872680 980__ $$aconf
000872680 980__ $$aVDB
000872680 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000872680 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000872680 980__ $$aI:(DE-588b)4597118-3
000872680 980__ $$aUNRESTRICTED