000872684 001__ 872684 000872684 005__ 20210130004250.0 000872684 037__ $$aFZJ-2020-00175 000872684 041__ $$aEnglish 000872684 1001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b0$$eCorresponding author$$ufzj 000872684 1112_ $$aInternational workshop GISAXS2019$$cHamburg$$d2019-11-20 - 2019-11-22$$gGISAXS 2019$$wGermany 000872684 245__ $$aFlow of Microemulsions Adjacent to Planar Surfaces 000872684 260__ $$c2019 000872684 3367_ $$033$$2EndNote$$aConference Paper 000872684 3367_ $$2BibTeX$$aINPROCEEDINGS 000872684 3367_ $$2DRIVER$$aconferenceObject 000872684 3367_ $$2ORCID$$aCONFERENCE_POSTER 000872684 3367_ $$2DataCite$$aOutput Types/Conference Poster 000872684 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1579789923_23631$$xOutreach 000872684 520__ $$aMicroemulsions consist of water, oil and surfactant. Although thermodynamically stable, domains of pure water and oil are formed on nanometer length scales and a surfactant film in between that are ideally observable by small angle scattering experiments. The bicontinuous microemulsion displays a sponge structure that forms when equal volumes of water and oil are mixed. Being exposed to hydrophilic planar surfaces, a lamellar order is found in the vicinity to the solid-liquid interface. The typical depth of the lamellae is 40 to 60nm, i.e. 4 to 6 perfect domains [1,2], before the perforations describe the decay to the bicontinuous phase. The membrane modes observed by neutron spin echo spectroscopy under grazing incidence are faster at the interface than in bulk [3]. This is an evidence for the lubrication effect, a facilitated flow of the lamellae along the interface. Employing clay platelets, the same effect could be observed in a bulk sample [4]. Furthermore, at smaller platelet diameters, the favorable modes of the lamellae were cut, and the overall dynamics slowed down similar to the bulk. Thus, the perfection of modes at the interface is connected to the platelet diameter. At rather high flow rates, the perforated transition region was reduced in size, while the perfect lamellae were persistent [2]. In macroscopic rheology experiments (Fig.1 left), the microemulsion with rather large clay platelets showed evidence for the lubrication effect on macroscopic scales, while at lower clay dimensions the viscosity was extraordinarily high [5] (Fig.1 right). Motivated by this effect, the rheology of crude oils with large clay platelets showed decreased viscosities at low temperatures (below 0°C). The dynamic asymmetry of the aromatic and aliphatic portions and the lamellar alignment of the domains may explain these findings. 000872684 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0 000872684 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1 000872684 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2 000872684 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0 000872684 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0 000872684 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0 000872684 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x1 000872684 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x2 000872684 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x3 000872684 7001_ $$0P:(DE-Juel1)166308$$aGvaramia, Manuchar$$b1 000872684 7001_ $$0P:(DE-Juel1)139010$$aLipfert, Frederik$$b2 000872684 7001_ $$0P:(DE-Juel1)166565$$aMangiapia, Gaetano$$b3 000872684 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b4$$ufzj 000872684 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b5$$ufzj 000872684 7001_ $$0P:(DE-Juel1)157910$$aJaksch, Sebastian$$b6$$ufzj 000872684 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b7$$ufzj 000872684 7001_ $$0P:(DE-Juel1)130821$$aMattauch, Stefan$$b8$$ufzj 000872684 7001_ $$0P:(DE-HGF)0$$aRukhadze, Marina$$b9 000872684 909CO $$ooai:juser.fz-juelich.de:872684$$pVDB$$pVDB:MLZ 000872684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b0$$kFZJ 000872684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b4$$kFZJ 000872684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b5$$kFZJ 000872684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157910$$aForschungszentrum Jülich$$b6$$kFZJ 000872684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b7$$kFZJ 000872684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130821$$aForschungszentrum Jülich$$b8$$kFZJ 000872684 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0 000872684 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1 000872684 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2 000872684 9141_ $$y2019 000872684 920__ $$lyes 000872684 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 000872684 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1 000872684 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2 000872684 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3 000872684 980__ $$aposter 000872684 980__ $$aVDB 000872684 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000872684 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000872684 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000872684 980__ $$aI:(DE-588b)4597118-3 000872684 980__ $$aUNRESTRICTED