000872687 001__ 872687
000872687 005__ 20210130004250.0
000872687 0247_ $$2Handle$$a2128/23846
000872687 037__ $$aFZJ-2020-00178
000872687 041__ $$aEnglish
000872687 1001_ $$0P:(DE-Juel1)177946$$aAbele, Daniel$$b0$$eCorresponding author$$ufzj
000872687 245__ $$aEigenvalue optimization for acoustic scattering problems$$f2019-02-01 - 2019-10-31
000872687 260__ $$c2019
000872687 300__ $$aXI, 72
000872687 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
000872687 3367_ $$02$$2EndNote$$aThesis
000872687 3367_ $$2BibTeX$$aMASTERSTHESIS
000872687 3367_ $$2DRIVER$$amasterThesis
000872687 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1579016291_28615
000872687 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
000872687 502__ $$aMasterarbeit, Fachhochschule Aachen, 2019$$bMasterarbeit$$cFachhochschule Aachen$$d2019$$o2019-10-02
000872687 520__ $$aThis master thesis is concerned with the optimization of eigenvalues of the Laplace differential operator, specifically interior Neumann eigenvalues, with respect to the shapeof the domain. Such eigenvalue problems arise in the study of acoustic scattering, whichhas applications in sonar or radar detection and medical imaging. The shape of the spacesignificantly affects the eigenvalues. Improved optimal values for some of them are reported.The main focus of the thesis is finding a description of the shape that is well suited foroptimization. The number of parameters should be low to keep the optimization spacesimple. At the same time, the range of representable shapes should be large enough toimprove upon previous results. Inspired by physics, equipotentials are used to modelthe knobbly objects found by previous researchers in a simple way.The work discusses a method of solving the eigenvalue problem. The BoundaryElement Method for boundary value problems is combined with Beyn’s method fornonlinear eigenvalue problems. The implementation of these methods is another centralissue. As the optimizer requires many evaluations, high speed is desired. The code isparallelized for efficient computation on a large cluster.The implemented solvers are tested for convergence. The parameter space is thoroughly numerically explored to facilitate optimization. Finally the results of the optimization are presented. The shape description shows a lot of promise but is not yetgeneral enough to optimize every eigenvalue.
000872687 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000872687 8564_ $$uhttps://juser.fz-juelich.de/record/872687/files/thesis.pdf$$yOpenAccess
000872687 8564_ $$uhttps://juser.fz-juelich.de/record/872687/files/thesis.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872687 909CO $$ooai:juser.fz-juelich.de:872687$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177946$$aForschungszentrum Jülich$$b0$$kFZJ
000872687 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000872687 9141_ $$y2019
000872687 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872687 920__ $$lyes
000872687 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000872687 980__ $$amaster
000872687 980__ $$aVDB
000872687 980__ $$aUNRESTRICTED
000872687 980__ $$aI:(DE-Juel1)JSC-20090406
000872687 9801_ $$aFullTexts