

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die Masterarbeit mit dem Thema

„Eigenvalue Optimization for Acoustic Scattering Problems“

selbstständig angefertigt und verfasst habe. Es sind keine anderen als die angegebenen

Quellen und Hilfsmittel benutzt worden.

Daniel Abele

Ort Datum Unterschrift

III

Abstract

This master thesis is concerned with the optimization of eigenvalues of the Laplace dif-

ferential operator, specifically interior Neumann eigenvalues, with respect to the shape

of the domain. Such eigenvalue problems arise in the study of acoustic scattering, which

has applications in sonar or radar detection and medical imaging. The shape of the space

significantly affects the eigenvalues. Improved optimal values for some of them are re-

ported.

The main focus of the thesis is finding a description of the shape that is well suited for

optimization. The number of parameters should be low to keep the optimization space

simple. At the same time, the range of representable shapes should be large enough to

improve upon previous results. Inspired by physics, equipotentials are used to model

the knobbly objects found by previous researchers in a simple way.

The work discusses a method of solving the eigenvalue problem. The Boundary

Element Method for boundary value problems is combined with Beyn’s method for

nonlinear eigenvalue problems. The implementation of these methods is another central

issue. As the optimizer requires many evaluations, high speed is desired. The code is

parallelized for efficient computation on a large cluster.

The implemented solvers are tested for convergence. The parameter space is thor-

oughly numerically explored to facilitate optimization. Finally the results of the op-

timization are presented. The shape description shows a lot of promise but is not yet

general enough to optimize every eigenvalue.

This work has been produced in cooperation with Jülich Supercomputing Center at

Forschungszentrum Jülich. Numerical computation was performed on the JURECA

Supercomputer.

V

Contents

List of Figures IX

List of Tables XI

1. Introduction 1

2. Numerical Methods 3

2.1. Numerical Solution of Boundary Value Problems 3

2.1.1. The Boundary Element Method 4

2.1.2. Discretization . 5

2.1.3. Analysis of the Integrand . 8

2.1.4. Symmetries . 10

2.2. Nonlinear Eigenvalue Problems . 11

2.2.1. Beyn’s Contour Integral Method 12

2.2.2. Discretization . 14

2.3. Shape Optimization . 15

3. Implementation 25

3.1. Framework . 25

3.2. Hankel Function . 26

3.3. Evaluating the Discrete Integral Operator 26

3.4. Beyn’s Integral Method . 27

3.5. Generating the Discrete Boundary . 28

3.6. Optimization . 29

3.7. Parallelization . 30

3.7.1. Performance Analysis . 30

3.7.2. Parallelization of Beyn’s Contour Integral Method 31

3.7.3. Parallelization of Matrix Evaluation 33

3.7.4. Realization . 35

3.7.5. Experiments . 37

4. Numerical Results 43

4.1. Convergence . 43

4.2. Spectrum and Parameter Space . 46

VII

Contents

4.3. Optimization . 49

5. Conclusions 55

A. The shapeopt Program 57

A.1. Dependencies . 57

A.2. Getting the Source Code . 57

A.3. Build . 58

A.4. Unit tests . 59

A.5. Using the Program . 59

B. Analysis of the Integrand in Maple 63

C. The JURECA Supercomputer 69

D. References 71

VIII

List of Figures

2.1. Domain of the PDE . 3

2.2. Discretized boundary of the PDE domain 5

2.3. Quadratic Lagrange basis polynomials 7

2.4. Discretized PDE domain with symmetry 10

2.5. Previously found shape maximizers for the first ten interior Neumann

eigenvalues . 17

2.6. Base points for equipotential shapes maximizing the third to sixth eigen-

value . 19

2.7. Base points for equipotential shape maximizing the tenth eigenvalue . . 19

2.8. Influence of parameter c on equipotential shapes 20

2.9. Influence of parameter α on equipotential shapes 20

2.10. Assignment of free irregularities to base points of shapes maximizing

eigenvalues three through six . 22

2.11. Assignment of free irregularities to base points of the shape maximizing

the tenth eigenvalue . 22

3.1. Times required to evaluate the whole matrix for different wavenumbers . 32

3.2. Cyclical distribution of work for contour integrals in Beyn’s method . . 33

3.3. Times required to evaluate each matrix element 34

3.4. Communication scheme for MPI parallelization 36

3.5. Scaling of OpenMP parallelization . 39

3.7. Scaling of MPI parallelization . 41

3.9. Scaling of hybrid parallelization . 42

4.1. Influence of individual parameters on interior Neumann eigenvalue λ4 . 48

4.3. Influence of parameters c and α on interior Neumann eigenvalue λ3 . . . 50

4.4. Influence of parameters c and α on interior Neumann eigenvalue λ4 . . . 50

4.5. Equipotential shape maximizers for interior Neumann eigenvalues λ4,

λ5, λ6, λ10 . 53

IX

List of Tables

2.1. Degrees of freedom of weight and position of equipotential base points . 23

3.1. Benchmark of Hankel function evaluation 26

3.2. Numerically evaluating the integrand near the singularity 27

3.3. Lifetime of matrices during Beyn’s algorithm 29

3.4. Runtime profile of Eigenvalue computation 31

3.5. Scaling of OpenMP parallelization . 39

3.6. Scaling of MPI parallelization . 41

3.7. Scaling of hybrid parallelization . 42

4.1. Convergence of interior Neumann eigenvalue λ1 with n 44

4.2. Convergence of interior Neumann eigenvalue λ3 with n 45

4.3. Convergence of interior Neumann eigenvalue λ1 with N 45

4.4. Convergence of interior Neumann eigenvalue λ3 with N 45

4.5. Real interior Neumann eigenvalues for the disk 46

4.6. Real interior Neumann eigenvalues for shape E3 47

4.7. Real interior Neumann eigenvalues for shape E6 49

4.8. Maximum interior Neumann eigenvalues with two free shape parameters 52

4.9. Maximum interior Neumann eigenvalues with all equipotential shape

parameters free . 53

4.10. Equipotential shape parameters for maximum interior Neumann eigen-

values . 53

XI

1. Introduction

Acoustic scattering theory is the study of how waves in an inelastic medium like a

fluid or gas are scattered by obstacles. The obstacle has different wave propagation

properties than the medium and thus may partially or fully absorb and reemit or reflect

the wave. This has applications for example in radar or sonar detection or medical

imaging. The theory for time harmonic waves inside a closed two-dimensional space

or domain D ⊂ �2 states that the field u (e.g. pressure of the medium) must satisfy the

partial differential equation (PDE)

△u + κ2u = 0 in D .

This equation is called Helmholtz equation. The second order differential operator △u =

∂2u/∂x2
1
+ ∂2u/∂x2

2
with spatial coordinates x1 and x2, is called Laplace operator. The

parameter κ ∈ � is the wavenumber or spatial frequency of the wave. The propagation

properties of the obstacle (e.g. the walls of a room) are specified by boundary conditions

(BC). Sound-hard surfaces allow no transfer of pressure across the surface. This is

described by the Neumann BC

∂u

∂ν
= 0 on ∂D

where ν is the normal vector onto the boundary ∂D directed into the exterior �2 \ D.

PDE and BC together form a boundary value problem (BVP).

The BVP can also be considered an eigenvalue problem. A solution u is an eigenvec-

tor for the eigenvalue λ = κ2 of the Laplace operator. For this particular problem, they

are also referred to as interior Neumann eigenvalues and -vectors. The goal of this work

is to find shapes of the domain D of constant area so that the eigenvalues are maximal.

There has already been some study in this area. It is well known that the eigenvalues

are real and discrete as the Laplace operator is self-adjoint. Szegö [25] and later Wein-

berger [28] have shown that the first eigenvalue (numbered ascendingly and ignoring

the trivial case λ = 0) is maximized by a disk. Girouard et al. [10] have proven that

the second eigenvalue is maximized by two disjoint disks of the same size. For higher

eigenvalues, theoretical results are sparse. It was conjectured for a time that unions

of disjoint disks maximize all eigenvalues. However, recently Poliquin and Roy-Fortin

[23] have shown that this cannot be true. There is also numerical evidence for con-

nected shape maximizers for some low eigenvalues. Numerical solutions depend on a

1

1. Introduction

good parameterization of the shape. Antunes and Oudet [4] have used truncated Fourier

series and found connected shapes that produce eigenvalues higher than disjoint unions

of disks for most eigenvalues below ten. Based on their results, Kleefeld [15] devel-

oped a description of the shapes with only two parameters and used it to improve the

third and fourth eigenvalue. In the work on hand, Kleefeld’s description will be tested

on the higher eigenvalues and extended and hopefully improved by adding additional

parameters.

The chapter immediately following this introduction will discuss methods for the

numerical solution of the BVP and eigenvalue problem. It will also give a detailed de-

scription of the optimization problem and of the parametrization of the shapes. Then

follows a discussion of the practical implementation with a special focus on paralleliza-

tion. The solution of this problem is very time consuming. Efficient computation is

necessary for the rapid testing of different parametrizations. Chapter 4 will discuss the

numerical results. The work closes with a summary and an outlook towards possible

future avenues of exploration.

2

2. Numerical Methods

As has been stated in the introduction, the goal is to find a shape so that the interior

Neumann eigenvalues are maximal. This chapter presents the numerical methods used

for each step of the computation. First the BVP must be discretized. Given a domain,

the Boundary Element Method transforms it into a homogeneous linear system whose

system matrix depends nonlinearly on the parameter κ. Thus the linear system is also

a nonlinear eigenvalue problem. Eigenvalues of this system are computed using Beyn’s

method. An objective function for optimization is constructed by combining these meth-

ods with a description of the shape of the domain using as few parameters as possible.

2.1. Numerical Solution of Boundary Value Problems

This section describes a method of solving BVPs. First the problem is stated in detail.

Let the domain D ⊂ �2 be an open and bounded set and ∂D its boundary. For the

described method to be applicable, the boundary is allowed to be disconnected but must

be smooth on each subset, i.e. ∂D is of class C2. The normal vector at some point

x ∈ ∂D towards the outside of the domain is denoted by ν := ν(x) (see Figure 2.1).

Figure 2.1.: Exemplary domain D, its boundary ∂D and the normal ν directed into the

exterior.

∂D

D

ν

3

2. Numerical Methods

The BVP consists of finding a function u that satisfies the Helmholtz equation and

the Neumann boundary condition

△u + κ2u = 0 in D (2.1a)

∂u

∂ν
= f on ∂D (2.1b)

for some wave number κ ∈ � and some function f ∈ C(∂D). Here △u = ∂2u/∂x2
1
+

∂2u/∂x2
2

with x1, x2 the Cartesian coordinates of �2 denotes the Laplace operator and

∂u/∂ν is the normal derivative of u in the direction of ν. Note that the method for the

solution of eigenvalue problems discussed later requires considering wavenumbers from

the set of complex numbers even though only real eigenvalues exist.

2.1.1. The Boundary Element Method

The BVP is solved using the boundary element method. This reduces the dimension of

the problem and the number of unknowns as only the boundary needs to be discretized

instead of the whole domain. For numerical stability, an ansatz based on the single layer

potential is chosen that yields an integral equation of the second kind. The theory behind

this method is covered extensively in [17, Chapter 6]. Note Example 12.14 regarding

the application to the Helmholtz equation.

As easily verified by application, the function Φκ : �2 ×�2 → �

Φκ(x, y) :=
i

4
H

(1)

0
(κ ‖x − y‖), (2.2)

with i the imaginary unit, H
(1)

0
the Hankel function of the first kind of order 0 and ‖ · ‖

the Euclidian norm is a solution to the Helmholtz equation (2.1a) with respect to x for

any y. It is called a fundamental solution of (2.1a). It follows that the so-called single

layer potential

u(x) :=

∫

∂D

Φκ(x, y)ψ(y) ds(y) , x ∈ D (2.3)

is also a solution to (2.1a) for any density function ψ(x) ∈ C(∂D). Note that the order of

differentiation and integration can be switched for any x ∈ D when applying (2.1a) to

(2.3). The density must be determined such that (2.3) also satisfies the boundary con-

dition (2.1b). Approaching the boundary from inside the domain, the normal derivative

of the single layer potential satisfies the jump condition

∂

∂ν(x)
u(x) =

1

2
ψ(x) +

∫

∂D

∂

∂ν(x)
Φκ(x, y)ψ(y) ds(y) , x ∈ ∂D . (2.4)

Applying the boundary condition (2.1b) yields the integral equation

1

2
ψ(x) +

∫

∂D

∂

∂ν(x)
Φκ(x, y)ψ(y) ds(y) = f (x) ∀x ∈ ∂D . (2.5)

4

2.1. Numerical Solution of Boundary Value Problems

For a numerical solution, (2.5) must be discretized, which yields an approximation of

the density. Inserting this density into a discretization of the single layer potential (2.3)

yields an approximation of the solution u.

2.1.2. Discretization

This section describes the discretization of the integral equation (2.5) following this

rough outline of the procedure. The boundary ∂D is separated into multiple intervals

supported by nodes on the boundary. Quadratic interpolation is used to approximate the

boundary and the density ψ on the intervals. In order to determine the unknown density

values at the nodes the integral equation that is the result of discretizing the boundary is

required to be satisfied exactly at each node. This yields a linear system.

The discretization of the single layer potential (2.3) is not discussed here in detail as

it is fundamentally similar to the discretization of (2.5). Also the linear system resulting

from the latter is already sufficient for calculating eigenvalues κ2 of the PDE (2.1a),

which is the main purpose of this work.

The first step is to discretize the boundary. Nodes xi, i = 0, . . . , n− 1 on the boundary

are chosen as in Figure 2.2. The number of nodes n must be even so that the nodes

separate the boundary into intervals ∂Dk, k = 0, . . . , n/2 − 1 with start node x2k, middle

node x2k+1, and end node x2k+2. The boundary being closed, the end node of the last

interval xn is identical to the start node of the first interval x0.

Figure 2.2.: Discretization of the boundary of domain D with n points and n/2 intervals.

xn−1 x
0

x
1

x
2

x
3

x
4

xn−2

D

∂D0

By this separation into intervals the integral over the boundary in (2.5) is transformed

into the sum

1

2
ψ(x) +

n/2−1
∑

k=0

∫

∂Dk

∂

∂ν(x)
Φκ(x, y)ψ(y) ds(y) = f (x) ∀x ∈ ∂D . (2.6)

5

2. Numerical Methods

For each interval ∂Dk there exists a unique smooth and bijective function gk(t) that

maps any value in the unit interval onto a point on ∂Dk, specifically gk(0) = x2k,

gk(1/2) = x2k+1, and gk(1) = x2k+2. Therefore we can substitute the integration lim-

its and variable in (2.6). Applying the substitution rule for integrals yields

1

2
ψ(x) +

n/2−1
∑

k=0

∫ 1

0

∂

∂ν(x)
Φκ(x, gk(t))ψ(gk(t))

∥

∥

∥g′k(t)
∥

∥

∥ dt = f (x) ∀x ∈ ∂D . (2.7)

The unknown functions gk(t) and ψ(gk(t)) must be approximated. Let f ∈ C([0, 1])

be any continuous function whose values are known at points ti, i = 0, 1, 2. Then the

function can be approximated by quadratic interpolation as

f̃ (t) = L0(t) f (t0) + L1(t) f (t1) + L2(t) f (t2)

=

2
∑

j=0

L j(t) f (t j)
(2.8)

where L j are the quadratic Lagrange basis polynomials given by the general formula

L j(t) =

2
∏

i=0
i, j

t − ti

t j − ti

.

These polynomials have the property that L j(t) yields 1 at t = t j and 0 at all other

nodes. For interpolation over the unit interval, the nodes t0 = 0, t1 = 1/2, t2 = 1 are

chosen corresponding to the start, middle, and end node of an interval, respectively.

The specific formulas for the polynomials (see also Figure 2.3) then read

L0(t) = 2(t − 1/2)(t − 1)

L1(t) = −4t(t − 1)

L2(t) = 2t(t − 1/2) .

The function gk(t) is continuous and known at the discretization nodes, so it satisfies

the conditions for quadratic interpolation. Interpolation yields the approximation

g̃k(t) = L0(t)gk(t0) + L1(t)gk(t1) + L2(t)gk(t2)

= L0(t)x2k + L1(t)x2k+1 + L2(t)x2k+2

=

2
∑

j=0

L j(t)x2k+ j .

(2.9)

6

2.1. Numerical Solution of Boundary Value Problems

Figure 2.3.: Quadratic Lagrange basis polynomials.

0 0.5 1

0

1

t

L
j(

t)
L0

L1

L2

Note that g̃k(t j) = gk(t j) at each interpolation node. Likewise the density is quadratically

interpolated on each interval ∂Dk as

ψ(g̃k(t)) =

2
∑

j=0

L j(t)ψ(gk(t j)) =

2
∑

j=0

L j(t)ψ2k+ j (2.10)

with ψi = ψ(xi) the yet unknown values of ψ at the nodes. Inserting the approximations

into the integral equation (2.7) and requiring the integral equation to be solved exactly

at the discretization nodes (collocation method) yields a linear system

1

2
ψi +

n/2−1
∑

k=0

2
∑

j=0

[

ψ2k+ j

∫ 1

0

∂

∂ν(xi)
Φκ(xi, g̃k(t))L j(t)

∥

∥

∥g̃′k(t)
∥

∥

∥ dt

]

= f (xi) (2.11)

for i = 0, . . . , n − 1 with n unknowns ψi and n equations. The node xi that corresponds

to each single equation is called the collocation node.

This linear system can be written in matrix form as

(

1

2
I + Aκ

)

~ψ = ~f (2.12)

with ~ψ = (ψ0, . . . , ψn−1)⊤ ∈ �n, ~f = (f (x0), . . . , f (xn−1))⊤ ∈ �n, and identity matrix

I ∈ �n×n. The matrix Aκ ∈ �n×n is dense and asymmetric. Because of the overlap of end

nodes of adjacent intervals the entries of Aκ in even columns (j = 0, 2, . . . , n−2) consist

7

2. Numerical Methods

of two summands

(Aκ)i, j =

∫ 1

0

∂

∂ν(xi)
Φκ(xi, g̃ j/2−1(t))L2(t)

∥

∥

∥g̃′j/2−1(t)
∥

∥

∥ dt

+

∫ 1

0

∂

∂ν(xi)
Φκ(xi, g̃ j/2(t))L0(t)

∥

∥

∥g̃′j/2(t)
∥

∥

∥ dt ,

(2.13)

wheras the entries in odd columns (j = 1, 3, . . . , n − 1) consist of only one summand

(Aκ)i, j =

∫ 1

0

∂

∂ν(xi)
Φκ(xi, g̃(j−1)/2(t))L1(t)

∥

∥

∥g̃′(j−1)/2(t)
∥

∥

∥ dt . (2.14)

The integrals must be evaluated numerically as discussed in the following section.

2.1.3. Analysis of the Integrand

In order to analyze the integrand in the previous section, the normal derivative of the

fundamental solution (2.2) must be determined. Differentiating the Hankel function of

the first kind of order 0 and applying the chain rule yields

∂

∂ν(x)
Φκ(x, y) =

∂

∂ν(x)

[

i

4
H

(1)

0
(κ ‖x − y‖)

]

= − iκ

4
H

(1)

1
(κ ‖x − y‖) ∂

∂ν(x)
‖x − y‖

= − iκ

4
H

(1)

1
(κ ‖x − y‖) 1

‖x − y‖ 〈x − y, ν(x)〉

(2.15)

where 〈 · , · 〉 denotes the standard scalar product and H
(1)

1
is the Hankel function of the

first kind of order 1. This expression contains a discontinuity at x = y as the norm

‖x − y‖ becomes 0, H
(1)

1
is singular at the origin of the complex plane and the norm

appears again in the denominator. The Hankel function is continuous everywhere but at

0, so this is the only point where the behavior of (2.15) must be explored further.

First separation into intervals as in (2.6) and the substitution as in (2.7) are applied to

obtain for the integrand in the k-th interval:

− iκ

4
H

(1)

1
(κ ‖x − gk(t)‖)

1

‖x − gk(t)‖
〈x − gk(t), ν(x)〉 .

If the point x lies outside the k-th interval of the boundary, this expression is again

continuous for t ∈ [0, 1] as ‖x − gk(t)‖ cannot be 0. In the following it is assumed that

there is a discontinuity in the interval, so gk(t0) = x for some t0 ∈ [0, 1]. The remaining

factors of the integrand of (2.7) (the density ψ(t), the Jacobian ‖g′(t)‖, and the Lagrange

polynomials) are continuous and do not need to be included in the analysis.

8

2.1. Numerical Solution of Boundary Value Problems

As ν(x) = ν(gk(t0)) is the outside normal along the boundary, it must be normal to the

curve gk at point t0. Assuming gk describes the boundary in anticlockwise direction, the

normal can be written as
(

0 1

−1 0

)

g′
k
(t0)

∥

∥

∥g′
k
(t0)

∥

∥

∥

where the tangent g′
k
(t0) is normalized and rotated by a right angle. This yields the final

expression to be analyzed

K(t) := − iκ

4
H

(1)

1
(κ ‖gk(t0) − gk(t)‖)

1

‖gk(t0) − gk(t)‖

〈

gk(t0) − gk(t),

(

0 1

−1 0

)

g′
k
(t0)

∥

∥

∥g′
k
(t0)

∥

∥

∥

〉

.

The type of the discontinuity depends on the limit of this expression as t approaches

t0 from both sides. The mathematical software system Maple™ [19] (see the attached

worksheet in Appendix B) finds the limit

lim
t→t+

0

K(t) = lim
t→t−

0

K(t) = − 1

4π
∥

∥

∥g′
k
(t0)

∥

∥

∥

3

〈

g′k(t0),

(

0 1

−1 0

)

g′′k (t0)

〉

. (2.16)

As the boundary described by gk is of class C2, this limit involving second derivatives

is well-defined. Thus the discontinuity is removable by defining

K(t0) = lim
t→t0

K(t) .

As the remaining pieces of the integrand, the density ψ(gk(t)) and the Jacobian ‖g′(t)‖,
are continuous, the whole integrand is made continuous by that definition.

It is necessary to preserve this continuity when discretizing the integrand by approx-

imating gk(t) using quadratic interpolation. For the limits (2.16) to be correct when the

replacing gk with the approximation g̃k, the normal vector at the collocation node must

be orthogonal to g̃k. Otherwise the integrand will contain an infinite singularity that is

much more difficult to handle numerically. An odd numbered collocation node x2i+1 lies

in the middle of interval i where g̃i is continuously differentiable, so the orthogonality

condition is easily satisfied. An even numbered node x2i is both in interval i and i− 1 as

g̃i(0) = g̃i−1(1) = x2i. However, the derivatives g̃′i(0) and g̃′
i−1

(1) are generally not equal.

Derivative g̃′
i−1

(1) must be used when integrating over interval i−1 and g̃′i(0) for interval

i to satisfy orthogonality. When integrating over the other intervals there are no clear

criteria. Alternating every interval is convenient and also smoothes out the error.

Using the limit it is possible to use any established quadrature routine for evaluating

the integrals. Due to cancellation in floating point arithmetic, evaluating the integrand

close to the singularity is still not recommended (see Appendix B and Table 3.2 for

numerical experiments for this effect). If this is required by the quadrature routine,

the limit can be used to approximate the exact integrand in an environment around the

singularity.

9

2. Numerical Methods

2.1.4. Symmetries

Symmetries of the domain D can be exploited to reduce the computational effort. Note

that the integrand contains the discretization points and normal vectors only as part

of a norm or scalar product. These operations are mostly invariant under rotation and

reflection. If x̂, ŷ, and ν̂ are the results of rotating vectors x, y, and ν, respectively, then

‖x̂ − ŷ‖ = ‖x − y‖ and

〈x̂ − ŷ, ν̂〉 = 〈x − y, ν〉 .

The first equation is also true if x̂, ŷ, ν̂ are reflected vectors. The scalar product changes

its sign:

‖x̂ − ŷ‖ = ‖x − y‖ and

〈x̂ − ŷ, ν̂〉 = − 〈x − y, ν〉 .

So the integrand changes sign on reflection. However, as the whole integration interval

is reflected, the integration boundaries are switched and the sign is compensated. Thus

the value of an integral over an interval is identical if the interval and the collocation

point are reflected or rotated.

Figure 2.4.: Discretized boundary with six degrees of symmetry, three rotations multi-

plied by two for axial symmetry.

xe

xi

x f

x j

xcxn

xd

xo

xa

xk

xb xm

If the discretization nodes on the boundary are chosen so that the intervals are sym-

metric and interval end nodes lie on the symmetry axes as in Figure 2.4 many matrix

entries will be identical. The computational effort saved depends on the total degree of

rotational and reflectional symmetry. The shape in Figure 2.4 has rotational symmetry

of degree three, i.e. it can be rotated by 120° and 240° in any direction around the center

10

2.2. Nonlinear Eigenvalue Problems

of the shape without changing it. It also has reflectional symmetry at each angle. Thus

the final degree of symmetry is six (three times two). If as in the figure the pair (xa, xi)

is reflected and/or rotated onto (xb, x j), (xc, xk), (xd, xm), (xe, xn), and (x f , xo), then

(Aκ)a,i = (Aκ)b, j = (Aκ)c,k = (Aκ)d,m = (Aκ)e,n = (Aκ) f ,o

of which only one value has to be evaluated. The same is true for all other pairs of points

and their images.

Each interval consists of two points, the middle node and one of the end nodes. So in

order for intervals to be symmetric, the number of nodes n must be divisible 2s, where s

is the degree of symmetry. Only a segment of the boundary is considered that consists of

n/2s intervals. This can be interpreted as either evaluating the whole integral equation

(row) for each collocation point in the segment (reducing the number of evaluated rows)

or evaluating for every collocation point only those parts of the equation that correspond

to an interval inside the segment (reducing the number of evaluated columns). Unlike

the whole boundary, the segment is not cyclical. The matrix elements that correspond

to both ends of the segment have to be explicitly evaluated. Thus, the number of matrix

elements that must be evaluated is n(n + 1)/s instead of n2. Asymptotically for large n

the factor of improvement approaches s.

2.2. Nonlinear Eigenvalue Problems

Suppose T : � ⊃ S → �n×n is a matrix valued operator that is holomorphic, i.e. in-

finitely smooth, over a subset S of the complex plane. This is denoted as T ∈ H(S ,�n×n).

Then a nonlinear eigenvalue problem (NLEP) is to find values λ ∈ � and vectors

v ∈ �n \ {0} such that

T (λ)v = 0 . (2.17)

A value λ that satisfies (2.17) is called eigenvalue of T , the vector v is called (right)

eigenvector. Note that a linear eigenvalue problem Ax = λx can be transformed into the

form (2.17) by introducing the operator T (λ) = (A − λI).

As in the linear case eigenvalues are characterized by their algebraic and geometric

multiplicity. An eigenvalue is called simple if it satisfies

N(T (λ)) = span{v} , v , 0 and

T ′(λ)v < R(T (λ)) ,

i.e. if it has geometric multiplicity one. Here N(T (λ)) = {x ∈ Cn | T (λ)x = 0} and

R(A) = {y ∈ Cn | T (λ)x = y, x ∈ �n} denote the nullspace and range of the matrix T (λ),

respectively. The derivative of T is taken elementwise. In the following only simple

eigenvalues will be considered.

11

2. Numerical Methods

It can be proven that eigenvalues of T are isolated, i.e. for every eigenvalue λ there is

a neighbourhood U ⊂ � of λ that does not contain any other eigenvalues [6, Theorem

2.2].

Given a simple eigenvalue λ and its right eigenvector v there exists a left eigenvector

w ∈ �n \ {0} such that

T (λ)Hw = 0 and

wHT ′(λ)v , 0

where T (λ)H denotes the conjugate transpose of the matrix T (λ). Left and right eigen-

vectors can always be chosen from the nullspaces of T (λ) and T (λ)H as a normalized

pair such that

wHT ′(λ)v = 1 and either

‖w‖ = 1 or

‖v‖ = 1 .

(2.18)

2.2.1. Beyn’s Contour Integral Method

This section describes a method to find eigenvalues within a contour in the complex

plane. The method was derived by W.-J. Beyn [6]. For simplicity only simple eigen-

values are considered. As Beyn shows, the algorithm can be applied to the general

case without modification as the structure of multiplicities is preserved. The described

method also requires that there are fewer eigenvalues than the dimension of the matrices

T (λ) and that all eigenvectors are linearly independent. This is usually the case but Beyn

also proposes an extension to the method that removes this restriction.

The central theorem of Beyn [6, Theorem 2.9] is the following:

Theorem 2.1. Let T ∈ H(S ,�n×n) have no eigenvalues on a contour C ⊂ S and eigen-

values λ j, j = 0, . . . , k − 1 with corresponding right and left eigenvectors v j and w j in

the interior of the contour. The eigenvectors have been normalized according to (2.18).

Then for every f ∈ H(S ,�)

1

2πi

∫

C

f (z)T (z)−1 dz =

k
∑

j=1

f (λ j)v jw j
H . (2.19)

From this theorem the method is now derived. The matrices

V = (v0, . . . , vk−1),W = (w0, . . . ,wk−1) ∈ �n×k

are introduced so the right hand side of (2.19) can be written as a matrix product. As

the eigenvectors are required to be linearly independent the rank conditions

rank(V) = k and

rank(W) = k
(2.20)

12

2.2. Nonlinear Eigenvalue Problems

hold. A dimension m with k ≤ m ≤ n and a matrix M ∈ �n×m is chosen such that

rank(WHM) = k . (2.21)

This is almost certainly true if M is chosen at random as rank(W) = k.

Both sides of equation (2.19) are multiplied from the right with M and two different

functions f0(z) = 1 and f1(z) = z are inserted. This yields two equations

A0 =
1

2πi

∫

C

T (z)−1M dz = VWHM (2.22)

A1 =
1

2πi

∫

C

zT (z)−1M dz = VΛWHM (2.23)

withΛ = diag(λ0, . . . , λk−1) the diagonal matrix of eigenvalues. The first equation (2.22)

does not include the eigenvalues so it will be used to eliminate the unknown matrices V

and W from the second equation (2.23).

The first step is to evaluate the integrals A0 and A1. By the rank conditions (2.20)

and (2.21) rank(A0) = rank(VWHM) = k, so A0 has k non-zero singular values σ j, j =

0, . . . , k − 1. The singular value decomposition (SVD) of A0 in reduced form can be

computed as

VWHM = A0 = V0Σ0W0
H (2.24)

with orthogonal matrices V0 ∈ �n×k,V0
HV0 = I and W0 ∈ �m×k,W0

HW0 = I and diagonal

matrix Σ0 = diag(σ0, . . . , σk−1). There exists a nonsingular matrix S ∈ �k×k such that

V = V0S . (2.25)

Thus (2.24) can be transformed into V0S WHM = V0Σ0W0
H which finally yields

WHM = S −1Σ0W0
H . (2.26)

Inserting (2.25) and (2.26) into (2.23) yields

A1 = V0SΛS −1Σ0W0
H

which can be transformed into

V0
HA1Σ

−1
0 W0 = SΛS −1 . (2.27)

So the matrix on the left hand side of the last equation can be diagonalized and its

eigenvalues are the same as λ j, the eigenvalues of T inside the contour C. The nonlinear

eigenvalue problem has thus been transformed into a linear eigenvalue problem. The

left hand side of (2.27) can be computed solely from A0 and A1. The right eigenvectors

v j can be calculated after diagonalization from V = V0
HS .

13

2. Numerical Methods

It remains to find the right dimension m so that the rank condition (2.21) is satisfied.

If m is less than or equal to k the matrix A0 will have rank m. So m is continually

increased until A0 is no longer of maximal rank, i.e. rank(A0) < m. Thus the rank of

A0 is no longer constrained by the dimension of M but by the rank of V and W. The

rank of A0 can be determined by the number of non-zero singular values. Algorithm 1

summarizes the described procedure.

Input: Operator T , contour C, maximum rank n, initial rank m

Output: Eigenvalues of T

while m ≤ n do

Initialize random matrix M;

Evaluate integrals A0 and A1 using T,C and M;

Compute SVD of A0;

Let k = number of non-zero singular values;

if k < m then

Compute B = V0
HA1W0Σ

−1;

Compute eigenvalues of B;

return eigenvalues;

else

Increment m;

end if

end while

Algorithm 1: Computation of all nonlinear eigenvalues of a matrix valued operator

T (z) inside a contour C.

2.2.2. Discretization

The contour integrals A0 and A1 must be evaluated numerically. The contour C is as-

sumed to be 2π-periodic and can be described by the smooth mapping h : [0, 2π] →
C, h(0) = h(2π). Thus the integral over the contour can be transformed into an integral

over the interval [0, 2π]. Applying the substitution rule for integrals yields

A0 =
1

2πi

∫ 2π

0

T (h(t))−1Mh′(t) dt .

The simplest useable contour, a circle with radius r and center µ, is given by h(t) =

µ + reit with derivative h′(t) = rieit.

The integral is evaluated using the trapezoidal quadrature rule. Beyn [6] shows theo-

retically and experimentally that using this scheme the numerical error decays exponen-

tially with the number of quadrature intervals, although care must be taken in selecting

14

2.3. Shape Optimization

the contour as the rate of convergence depends on the distance of the eigenvalues from

the contour. Introducing the quadrature nodes t j = 2π j/N, j = 0, . . . ,N −1 spaced 2π/N

apart yields the approximation

A0 ≈
1

Ni

N−1
∑

j=0

T (h(t j))
−1Mh′(t j) .

Similarly, A1 can be approximated as

A1 ≈
1

Ni

N−1
∑

j=0

h(t j)T (h(t j))
−1Mh′(t j) .

Inverting T (λ), computing the SVD of A0 and diagonalization of B can be done by

established methods. As zero singular values are not reproduced exactly due to the

approximation error of the contour integrals, a tolerance must be applied when selecting

the non-zero singular values in order to accurately determine the rank A0 and therefore

the number of eigenvalues. Spurious eigenvalues may be produced if the tolerance is

too large.

Evaluating the integrals A0 and A1 is the most computationally expensive part of the

algorithm, especially if evaluating the operator T is expensive and/or the iteration has to

be repeated multiple times due to the rank condition. The matrices on which SVD and

diagonalization is performed are expected to be small unless the number of eigenvalues

in the contour is very large.

2.3. Shape Optimization

The main challenge of maximizing eigenvalues with respect to the shape of the domain

D of the BVP is to find a good parametrization of the shape. This section presents

an implicit description of the domain with only a small number of parameters. Then

the methods for discretizing the boundary value problem and solving nonlinear eigen-

value problems from previous sections are employed in the construction of an objective

function that receives the shape parameters and computes a specific eigenvalue.

First the problem is stated in detail. As has been noted in the introduction, the spec-

trum of interior Neumann eigenvalues for a domain D is real and discrete:

σ(D) = {λi}i∈�0
, λ0 = 0 ≤ λ1 ≤ λ2 ≤

The eigenvalues λi depend on the shape and area of the domain. For a maximum to

exist, the area of D must be constant because the eigenvalues are inversely proportional

15

2. Numerical Methods

to the area [4, Proposition 1.1]. Using a constant area of one produces a constrained

optimization problem

max
D
{λk(D)}

|D| = 1
(2.28)

with a fixed index k ≥ 1, and |D| denoting the area of the domain D. The eigenvalues

now only depend on the shape of the domain. Using the homogeneity relations [4,

Proposition 1.1]

λk(αD) = α−2λk(D)

|αD| = α2 |D|

where D is scaled uniformly by some factor α, the constrained problem (2.28) can be

transformed into the unconstrained problem

max
D
{λk(D) |D|} . (2.29)

In the rest of this work, unless specially noted, the area is ignored and the term eigen-

value refers to the normalized eigenvalue λk |D| that is equal to the eigenvalue λk for a

domain of the same shape of area one.

The domain is generally allowed to be disconnected. However, the spectrum of a

composite domain σ(D1 ∪ D2) where D1 ∩ D2 = ∅ (disjoint union) is the ordered union

of the spectrums of its component domains σ(D1) and σ(D2). Additionally, if a domain

consists of m disjoint connected components, then the eigenvalues λ0 = λ1 = · · · =
λm−1 = 0. As a consequence of these two facts, the maximum eigenvalues that can

be produced using a disjoint union can be easily calculated from the maximums over

connected domains [23]. So it is sufficient to consider only connected domains.

As noted in the introduction, the shape maximizers for some eigenvalues have been

proven theoretically. The first eigenvalue is maximized by a disk [25, 28]. The second

eigenvalue is maximized by two disjoint disks of the same size [10]. There are no such

results for higher eigenvalues. It has been shown however, that not all eigenvalues are

maximized by disjoint unions of disks [23]. There is ample numerical evidence for

connected shape maximizers for many eigenvalues [15, 4].

For problem (2.29) to be numerically solvable, the domain D must be parametrized.

A trivial parameterization can be achieved by taking the coordinates of points on the

boundary as parameters. This obviously leads to a large number of degrees of freedom

and therefore to large computation costs. Antunes and Oudet [4] reduce the number of

parameters using truncated Fourier series. The Fourier coefficients are the parameters

for optimization. Kleefeld [15] uses an implicit contour with just two parameters. This

method shall be described here.

16

2. Numerical Methods

Based on the shape maximizers found by Antunes and Oudet that resemble merged

disks (see Figure 2.5), Kleefeld proposes to use equipotentials. These are contours

defined by the implicit function

np−1
∑

i=0

1

‖x − pi‖
= c (2.30)

with base points pi ∈ �2, i = 0, . . . , np − 1 and parameter c ∈ � that is satisfied by any

point x ∈ ∂D. The shape maximizer for the third eigenvalue of (2.1) consists of three

circles, so three base points are used that form an equilateral triangle. Four base points

that form two such equilateral triangles are used to approximate the shape maximizer

for the fourth eigenvalue. The pattern of adding a point that forms another equilateral

triangle can be continued to create maximizers for the fifth, sixth, and tenth eigenvalue.

Figures 2.6 and 2.7 show these configurations. The shapes for the other eigenvalues are

not used in this work, but they follow largely the same pattern. Some are disjoint unions

of a circle and a lower equipotential. The (theoretically proven) maximizer for the first

eigenvalue is a disk and is described by the equipotential with one base point. The

parameter c constricts the shapes as shown in Figure 2.8. It depends on the otherwise

arbitrary size of the triangles. In this work just as in Kleefeld’s work, triangles with a

side length of
√

3 are used.

Kleefeld further modified the equipotentials in order to increase flexibility, i.e. to

be able to model more different shapes and to more accurately approximate the shape

maximizers. The effect of additional parameter α ∈ � in

np−1
∑

i=0

1

‖x − pi‖2α
= c . (2.31)

can be described as sharpening the indentations without influencing the other areas of

the shape. Figure 2.9 shows the effect of this parameter. The factor two before the expo-

nent α is introduced in order to avoid computation of the square root when computing

the norm.

With modified equipotentials using these two described parameters, Kleefeld was

able to improve upon the results for the third and fourth eigenvalue from Antunes and

Oudet. Whether the scheme can be succesfully applied to higher eigenvalues remains to

be tested. It is also possible that Kleefeld’s results can be improved upon by introducing

more degrees of freedom. So far, the base points of the equipotentials have been ar-

ranged on a completely regular triangular grid and all base points are weighted equally.

As there is no particular reason for this regularity other than visual intuition, breaking it

might prove beneficial. So the base points will be allowed to deviate slightly from their

regular position. The weight for the base points in the sum of potentials will be allowed

18

2.3. Shape Optimization

Figure 2.6.: Base points for equipotential shapes maximizing the third to sixth eigen-

value. A cross marks the origin which is also the center of symmetry.

01

2

0

1

2

3

01

2
3

4

0

1

2
3

4

5

Figure 2.7.: Base points for equipotential shape maximizing the tenth eigenvalue. The

origin and rotation center coincide with the central base point.

0

1

2

3
4 5

6

7

8

9

19

2. Numerical Methods

Figure 2.8.: Influence of parameter c = 1.75, 2.00, 2.25, 2.50, 2.75, 3.00 on the equipo-

tential shape with triangle base.

Figure 2.9.: Influence of parameter α = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 with fixed c = 2.0 on

the modified equipotential shape with triangle base.

20

2.3. Shape Optimization

to deviate from the regular weight of one. The imagined balls around base points ex-

pand as their weight increases. In general the boundary of the shape moves away from

such points. This leads to the final equation

np−1
∑

i=0

1 + δ̂i

‖x − (pi + ǫ̂i)‖2α
= c (2.32)

where ǫ̂i ∈ �2, i = 0, . . . , np−1 is the irregularity of position and δ̂i ∈ �, i = 0, . . . , np−1

is the irregularity of weight of base point i (c.f. indices in Figure 2.6). The eigenval-

ues do not depend on the absolute position of the domain in space, only on the relative

position of its base points, so at least one base point should remain fixed during opti-

mization. One weight should remain fixed to avoid a dependency between the weights

and parameter c. It is always possible to normalize one weight to a value of one without

changing the shape by dividing all weights and c by that weight. The degrees of free-

dom added by this irregularity are further reduced by a requirement that no rotation or

reflection symmetries of the regular base points are broken. It must be said that at this

point the conjecture that the symmetries are meaningful is unproven. However, based

on the results of Antunes and Oudet, the conjecture seems reasonable and it keeps the

number of parameters low.

Table 2.1 lists the remaining numbers of degrees of freedom for weights fǫ and posi-

tion fδ after dependencies and symmetries have been accounted for. Which base points

and weights are fixed and which are free is arbitrary as long as symmetry is not broken.

Figures 2.10 and 2.11 show the assignment of non-zero irregularities graphically. For

one base point, there are no degrees of freedom as one positition and one weight are

fixed. For three base points, as the points are all symmetric images of each other and

as one of the points is fixed, so are the others. For four points, the left and right points

are not images of the top and bottom points. But the left point is a mirror image of the

right point, so they must have the same weight. They can only move along the x axis

so as to not break rotation symmetry and must move the same amount but in opposite

directions. In total there is one degree of freedom each for weights and positions. The

degrees of freedoms for the other shapes are determined in the same way.

The family of shapes with k base points described by Equation (2.32) will be referred

to as Ek. In order to form an instance of the family, the parameters will be given in

braces following the name of the family, e.g. E5{c, α, ǫ, δ} or E5{c = 1.0, α = 2.0, ǫ =

(0.07,−0.1,−0.05), δ = (0.2,−0.1)} for specific numerical values. Irregularities ǫ =

(ǫ0, . . . , ǫ fǫ−1) and δ = (δ0, . . . , δ fδ−1) will be omitted if fǫ = 0 or fδ = 0, respectively.

Sometimes the specific parameter values of an instance will be irrelevant. In this case,

the list of parameters may be omitted. So Ek can refer both to the family and an instance

of the family if the context is unambiguous. The shape Ek will be used to maximize the

eigenvalue λk. So the optimization problem (2.29) can be more accurately written as

max
c,α,ǫ,δ
{λk(Ek{c, α, ǫ, δ}) |Ek{c, α, ǫ, δ}|} . (2.33)

21

2. Numerical Methods

Figure 2.10.: Assignment of free irregularities of position ǫi and weight δi to base points

of shapes maximizing eigenvalues three through six. A cross marks the

origin which is also the center of symmetry.

δ0 δ0

ǫ0 ǫ0

δ0δ0

δ1

ǫ0

ǫ1

ǫ0

ǫ1

ǫ2

δ0

δ0 δ0

ǫ0

ǫ0 ǫ0

Figure 2.11.: Assignment of free irregularities of position ǫi and weight δi to base points

of the shape maximizing the tenth eigenvalue. The origin and rotation

center coincide with the central base point.

δ1

δ0

δ0

δ1
δ0 δ0

δ1

δ0

δ0

ǫ0

ǫ0 ǫ0

22

2.3. Shape Optimization

Table 2.1.: Degrees of freedom of weight fǫ and position fδ of equipotential base points

per number of base points k without breaking symmetries. Non-zero and

symmetrically independent irregularities ǫ̂i and δ̂i derived from free irregu-

larities ǫi, i = 0, . . . , fǫ − 1 and δi, i = 0, . . . , fδ − 1 are given in brackets, the

rest are zero or determined through symmetry.

k fǫ fδ

1 0 [−] 0 [−]

3 0 [−] 0 [−]

4 1

[

ǫ̂1 =
(

ǫ0 0
)⊤]

1
[

δ̂1 = δ0

]

5 3

[

ǫ̂1 =
(

−ǫ0 −ǫ1

)⊤
, ǫ̂3 =

(

0 ǫ2

)⊤]

2
[

δ̂1 = δ0, δ̂3 = δ1

]

6 1

[

ǫ̂0 =
(

ǫ0 0
)⊤]

1
[

δ̂0 = δ0

]

10 1

[

ǫ̂0 =
(

ǫ0 0
)⊤]

2
[

δ̂0 = δ1, δ̂1 = δ0

]

The method for discretizing the BVP presented in Section 2.1 requires an even num-

ber n of points on the boundary. In order to generate these points, equation (2.31) is

transformed into polar coordinates. Equidistant angles φi = 2πi/n, i = 0, . . . , n − 1 are

chosen and a root finding algorithm is applied to find the unique radius ri for each φi such

that the transformed equation is satisfied. The boundary integral method, specifically the

interpolation of the boundary, works more conveniently with Cartesian coordinates, so

the pairs (ri, φi) are transformed back as xi = (ri cos(φi), ri sin(φi)). It would be possible

to calculate the normals at these points exactly by differentiating the implicit equation

as done in [15]. But as described in Section 2.1.3, it is necessary to approximate the

normals so they are orthogonal to the approximated boundary.

In order to calculate the area of the domain it is approximated as a polygon with

nq ≫ n points qi, i = 0, . . . , nq − 1 that are generated using quadratic interpolation of the

n boundary discretization points. Note again that the contour is closed, so q0 = qnq
. The

area of a non-self-intersecting polygon is the sum of the area of the triangles spanned

by two adjacent points and the origin. The area of each triangle is added or subtracted

based on the sign of the angle at the origin so the formula works for general polygons

23

2. Numerical Methods

anywhere in the plane. Thus the area is given by the formula [29, p. 206]

A ≈ 1

2

∣

∣

∣

∣

∣

∣

∣

nq
∑

i=0

∣

∣

∣

∣

∣

∣

qi,1 qi+1,1

qi,2 qi+1,2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∣

∣

nq
∑

i=0

(qi,1qi+1,2 − qi,2qi+1,1)

∣

∣

∣

∣

∣

∣

∣

which uses the determinant of the matrix of coordinates to calculate the area of a triangle

and also applies the correct sign.

With this, all components are available that are necessary to construct the objective

function for the optimization of eigenvalue λk. The parameters c, α, ǫ, δ are inputs to

the function. They fully define the boundary of the domain D = Ek{c, α, ǫ, δ}. The first

step of evaluating the function is to generate n points on the boundary according to the

process that has just been described. With the domain D so fixed, the discretization of

the BVP is a holomorphic function T (κ) that takes the wave number κ ∈ � as input and

returns an n×n complex matrix. Thus Beyn’s method as described in Section 2.2 can be

applied to compute a subset of the spectrum of T . It is not necessary to compute all or

even many eigenvalues of T . The results of previous works or experiments can be used

to determine a circle with small radius (the contour C for Beyn’s algorithm) so that κk

is contained in the computed subset. Using a similar heuristic, κk can be selected from

the subset. The area of the domain is computed. The eigenvalue λk |D| = κ2
k
|D| is the

result of the objective function. It may be necessary to multiply with −1 as most generic

optimization algorithms search for a minimum instead of a maximum.

The gradient

(

∂
∂c
λk(Ek{c, α, ǫ, δ}) ∂

∂α
λk(Ek{c, α, ǫ, δ}) ∂

∂ǫ
λk(Ek{c, α, ǫ, δ}) ∂

∂δ
λk(Ek{c, α, ǫ, δ})

)

cannot be trivially formed. Thus a method for unconstrained optimization problems that

does not require derivatives of the objective function (e.g. the Nelder-Mead simplex

method [20]) is employed.

24

3. Implementation

A program was developed that implements the methods for eigenvalue optimization

described in Chapter 2. As the computation of eigenvalues is very expensive especially

for the CPU, some effort was put into performance optimization. A few aspects of

this work will be highlighted in this chapter. The focus will be on parallelization. As

will be shown the numerical methods are well suited for distributed computation. The

main target system is the JURECA cluster at Forschungszentrum Jülich [14], also see

Appendix C.

Mathematical code is usually implemented most easily in a language like Python or

specialized mathematics environments like MATLAB. But one evaluation of eigenval-

ues to acceptable precision using existing MATLAB code requires many hours or even

more than a day. Optimization with two parameters takes weeks, more than two param-

eters are completely infeasible. For maximum performance, a systems programming

language is desirable. The language C was chosen for wide availability of libraries and

resources. In principle it would be possible to export the solvers into a library that can be

integrated into any other language. Even before parallelization, the new code is faster

than the existing MATLAB code by about a factor of 50, which makes up for longer

development time.

3.1. Framework

As much work as possible was avoided by employing existing numerical libraries.

Specifically robust routines for the following tasks were required:

• Evaluating Hankel function of low integer order for complex arguments (see Sec-

tion 2.1)

• Quadrature to evaluate the matrix Aκ (see Section 2.1)

• Basic and advanced linear algebra for Beyn’s method (see Section 2.2)

• Solving nonlinear equations for generating points on the contour given by an im-

plicit function (see Section 2.3)

• Nonconstrained optimization without derivatives (see Section 2.3)

25

3. Implementation

The GNU Scientific Library (GSL) [9, 11] offers numerical routines for a large array

of problems and covers all of the points above except for evaluating Hankel functions

where it only supports real valued arguments. Due to being open source, it is also easily

available and therefore widely used and tested. It has utilities for complex arithmetic

and flexible matrix and vector data types. This makes GSL a good framework for the

program.

3.2. Hankel Function

The Hankel function in the integrand of (2.11) is the most basic building block of the

program. However, robust implementations for complex arguments are rare. The For-

tran code ZBESH by Amos [2, 21] was compared with function nag_complex_hankel

from NAG C Library [26]. Both have proven to be reliable in the domain that is relevant

for this work. Amos’ code is used by SciPy, among others. The routines allow specify-

ing kind and order of the Hankel function. Only H
(1)

1
is tested as no others are required

for this work. Table 3.1 shows the results of a benchmark using Google’s benchmark

framework [5]. The considerably faster Amos routine was chosen. The reason for the

NAG routine being slower despite being based on Amos’ code was not further exam-

ined. One reason may be that compiling the Amos code into the program allows for

better inlining and optimization, specifically whole program optimization where opti-

mization is deferred to the linker stage of the build process.

Table 3.1.: Benchmark of Hankel function evaluation.

Routine Avg. Time #Iterations

ZBESH 322 ns 2047108

nag_complex_hankel 768 ns 912209

3.3. Evaluating the Discrete Integral Operator

A quadrature routine is required to evaluate the elements of matrix Aκ, i.e. the dis-

cretized integral operator (see Section 2.1.2). GSL contains integration routines based

on QUADPACK. General integrands as well as integrands with singularities or special

forms are supported. GSL also provides additional routines to increase the number of

integrals that can be handled. As the integrands in this problem are well behaved, the

integrals can be solved quickly to within 10−10 absolute and relative tolerance by general

adaptive 15 point Gauss-Kronrod rule. Complex quadrature routines are not available,

26

3.4. Beyn’s Integral Method

so real and imaginary parts of the integral are evaluated separately. A combined routine

might be able to save some evaluations of the integrand.

In the general case, implementing the integrand is straightforward using an available

routine for evaluating Hankel functions. However, the integrands contain a singularity

for those matrix elements where the collocation point is in the integration interval (see

Section 2.1.3). Collocation point xi causes a singularity in integration interval k . . .

• . . . at t = 0 if i is even and k = i/2. (xi is the start point of the interval)

• . . . at t = 1 if i is even and k = i/2 − 1. (xi is the end point of the interval)

• . . . at t = 0.5 if i is odd and k = (i − 1)/2. (xi is the mid point of the interval)

Evaluating the integrand at the singularity is not possible. Close to the singularity

cancellation prevents accurate evaluation. Experiments (e.g. Table 3.2) suggest re-

placing the integrand with a limit approximation if the absolute value of the argument

κ ‖xi − g̃k(t)‖ falls below 10−6. Around that value, the real part of the integrand begins

to oscillate and diverge.

Table 3.2.: Numerically evaluating the integrand (denoted f) near the singularity t0. The

analytical limit is f ∗ := limt→t0 f (t) ≈ −0.012429678092. The boundary

of the unit disk is discretized with 80 points. For collocation point x0 the

singularity in interval k = 0 is at t0 = 0. Wavenumber κ = 1.0.

|t − t0| ‖x0 − g̃0(t)‖ f (t) | f (t) − f ∗|
1.00·10−1 1.57·10−2 −0.00895519−0.00000174i 3.47·10−3

1.00·10−2 1.57·10−3 −0.01205939−0.00000002i 3.70·10−4

1.00·10−3 1.57·10−4 −0.01239242+0.00000000i 3.73·10−5

1.00·10−4 1.57·10−5 −0.01242595+0.00000000i 3.73·10−6

1.00·10−5 1.57·10−6 −0.01242915+0.00000000i 5.31·10−7

1.00·10−6 1.57·10−7 −0.01248435+0.00000000i 5.47·10−5

1.00·10−7 1.57·10−8 −0.02493252+0.00000000i 1.25·10−2

1.00·10−8 1.57·10−9 0.98552244+0.00000000i 9.98·10−1

1.00·10−9 1.57·10−10 −91.17768000+0.00000000i 9.12·101

3.4. Beyn’s Integral Method

Apart from evaluating the matrix valued operator that is provided as a function pointer,

Beyn’s integral method requires solving linear systems and computing matrix products

and eigenvalues as well as performing singular value decomposition (SVD). The BLAS

27

3. Implementation

(Basic Linear Algebra Subprograms) [7] and LAPACK (Linear Algebra Package) [3,

18] APIs are the de-facto standard for these tasks in high performance computing. Im-

plementations of these interfaces include open source libraries like OpenBLAS [22] as

well as highly optimized proprietary libraries like the Intel Math Kernel Library (MKL)

[13]. Due to the common interface definition, the implementation can be switched freely

to use the fastest that is available on the current system (usually MKL on Intel CPUs if

available). GSL provides convenient wrappers around BLAS routines based on its own

matrix and vector data types. Where GSL is missing such abstractions (e.g. GSL only

wraps BLAS, not LAPACK), custom ones can be created easily to improve readability

and consistency of the code, e.g. a function void matrix_complex_eigenvalues

(gsl_matrix_complex* A, gsl_vector_complex* s) that wraps the LAPACK

routine zgeev (assuming eigenvectors are not required).

The algorithm requires a random matrix. The randomness does not need to be very

strong, so basically any random number generator will suffice. A constant seed is used

to ease debugging. If the matrix size is limited, the whole matrix could be static, but the

performance gains will almost certainly be negligible.

In order to reduce the number of memory allocations and the amount of memory used,

matrices are reused between eigenvalue evaluations as well as during the algorithm. Ta-

ble 3.3 shows the matrices that are involved in the implementation of the algorithm and

their lifetime based on the computation steps of the algorithm (additional vectors re-

quired for SVD and the final result are handled similarly). The computation of matrix

B actually consists of multiple matrix multiplication steps that are ignored here to illus-

trate the principle. At most one �n×n and four �n×k matrices are required where n is the

dimension of the matrix valued operator and k is the current rank. Smaller matrices are

stored in the memory of bigger matrices where necessary as n > k. To save memory, it

is assumed that the initial rank k is well chosen and no rank iteration is required. Other-

wise reallocation with geometrically increased capacity is used like in typical dynamic

array implementations to balance the number of allocations and memory usage.

3.5. Generating the Discrete Boundary

A routine is required to solve the modified equipotential equation (2.31) in polar coor-

dinates (r, φ) for r at fixed angle φ. Instead of a single high level routine, GSL provides

the low level building blocks (initialization, iteration, stopping criteria) for custom root

solvers. From this an abstract routine was created for the program. GSL implements

both bracketing and Newton-type solvers for non-linear equations. It would not be diffi-

cult to provide a derivative for the equation in order to use a Newton solver. Bracketing

algorithms are generally more simple and reliable.

Assuming the parameters are chosen so that the shape is simply connected and given

r > 0, an initial bracket can be found naively by probing the positive number line. A

28

3.6. Optimization

Table 3.3.: Lifetime of matrices during Beyn’s algorithm.

Computation step

Matrix Size A0,1 SVD B EVs Note

T n × n × -

M n × k × random matrix

T MP1 n × k × temporary storage for T−1M

A0 n × k × × -

A1 n × k × × × -

V/V0 n × n × × -

W/W0 k × k × × -

T MP2 k × k × temporary storage for V0
HA1

B k × k × × -

heuristic like max0≤i≤np−1 ‖pi‖+c−2α might be used as a decent initial guess. That formula

is derived from the implicit function by approximating a point beyond one of the base

points where the influence of the other base points is negligible.

The implicit function has a singularity at the base points, i.e. x = pi for any i =

0, . . . , np − 1. The potential is infinite at these points. These poles may be hit by the

bracketing algorithm if in polar coordinates the angle of x is equal to the angle of one

of the base points. Choosing initial brackets to avoid the poles is not trivial, but as the

sign does not change at the poles, infinity can be replaced with any large positive value

without compromising the solver.

A few possible performance improvements (Newton solver, heuristic initial guess)

have been mentioned. However, unless a scheme with higher algorithmic complexity

is used to distribute the points along the boundary, generating the points is a computa-

tionally insignificant part of the program, so reliability and simplicity is preferred over

faster convergence and potentially better performance. For the same reason, an arbitrary

low tolerance of 10−10 is used as a stopping criterion instead of a more fine tuned value

that is just sufficient for convergence of the final eigenvalues.

3.6. Optimization

The originally constrained optimization problem was transformed into an unconstrained

problem as discussed in Section 2.3. The derivative of the objective function is not

available. GSL provides an implementation of the Nelder-Mead (or downhill simplex)

method for unconstrained optimization without derivatives. As for root solvers, an ab-

stract minimization routine is built from low level building blocks. Both the change of

the residual and the size of the simplex are controlled to check for termination.

29

3. Implementation

Parameters that are not inputs to the objective function have to be chosen correctly.

From previous works [4, 15] some approximate eigenvalues are known. Others can be

found by experimentation. Knowing the approximate normalized eigenvalue λk = κ
2
k
|D|

and the area |D| allows choosing the contour for Beyn’s algorithm so that the eigen-

value is inside the contour and as close to the center as possible to optimize precision

[6, Corollary 4.8]. Beyn’s algorithm may still return more than one eigenvalue. The

eigenvalues are generally separated well enough so that the correct value can be heuris-

tically selected without computing the whole spectrum by probing the real axis. For

these heuristics to work it is necessary to start optimization close enough to the opti-

mum. Some experimentation may be required to find appropriate starting values for the

shape parameters.

For example, it is known from previous works that the fifth eigenvalue is almost

certainly less than 60. Thus if values for shape parameters are known where the sixth

eigenvalue is greater than 60 and assuming the step size for the optimization are not too

big, the sixth eigenvalue in each iteration of the optimization can be reliably selected

from the output of Beyn’s algorithm (after normalization) by choosing the first value

above 60. A useable contour for Beyn’s algorithm can be determined by reversing

normalization. The sixth eigenvalue is at first guess expected to be somewhere between

60 and 67, so a circle that encloses both
√

60/ |D| and
√

67/ |D| could be used.

3.7. Parallelization

A very fine discretization, specifically a high number of points to approximate both

the boundary of the domain of the PDE and the contour for Beyn’s integral method, is

required in order to achieve accurate results. This makes the computation fairly slow

and expensive. Previous sections already provided some insight into improving sin-

gle threaded performance. However, modern systems offer increasing number of CPU

cores. This section will describe the parallelization scheme that allows the program to

use these resources efficiently.

3.7.1. Performance Analysis

To be able to implement any performance optimization, it is crucial to analyze the run-

time profile of the program and identify hotspots. Table 3.4 shows the profile of a single

evaluation of eigenvalues, i.e. of the objective function (the optimization algorithm itself

is outside the scope of this work). The profile clearly shows that almost all of the time

is spent on evaluating contour integrals in Beyn’s method. Evaluating the matrix valued

operator consists almost exclusively of evaluating the integrals for each matrix element.

Therefore, parallelization of these hotspots covers a significant portion of the program.

30

3.7. Parallelization

Table 3.4.: Runtime profile of Eigenvalue computation with Beyn contour integral dis-

cretization N = 48 and number of collocation points n = 1152. Lists the

time spent inside each node of the call tree in percentage of total time and

percentage of parent node.

Function % of Total % of Parent

Compute eigenvalues for one shape 100 100

Discretize shape, solve nonlinear equations < 0.1 < 0.1

Beyn’s method 99.9 99.9

Compute integrals A0/1 (loop over N) 99.9 99.9

Evaluate matrix (loop over n2) 98.8 98.8

Quadrature of matrix elements 98.8 99.9

Memory accesses and symmetries < 0.1 < 0.1

Invert matrix, multiply and add 1.2 1.2

Other lin. alg. operations (SVD, lin. EVs, etc.) < 0.1 < 0.1

Two approaches will be discussed, parallelization of Beyn’s method and parallelization

of single matrix evaluations.

3.7.2. Parallelization of Beyn’s Contour Integral Method

The contour integrals in Beyn’s method are evaluated using a trapezoidal rule with N

fixed nodes, which is basically a sum of the matrix valued integrand evaluated at each

node (see Section 2.2.2). The evaluations of the summands, which consists mostly of

evaluating the matrix valued operator and to a lesser extent of solving linear systems,

are completely independent of each other. Thus a large part (>99%) of the program can

be trivially parallelized here. Domain decomposition is performed, where each task is

assigned some of the nodes, evaluates the corresponding summands and sums them up

locally. For this, each task requires the random matrix. This requires no synchronization

between tasks as long as each task uses the same seed (can be static) for the random

number generator. Each task also requires all the data necessary to evaluate the operator,

mostly the discretized boundary. Finally, each task requires memory for the random

matrix, the evaluated operator and the local sum. The local results are reduced to get

the final result.

For best scaling, each task must be assigned an equal amount of work. During Beyn’s

method, the matrix is evaluated at different complex values κ along the chosen contour.

As discussed previously, the contour used here is a circle centered on the positive real

axis of the complex plane. Figure 3.1 shows the time required for one evaluation of the

matrix for different κ (0 is omitted as the Hankel function is not defined there). The area

31

3. Implementation

Figure 3.1.: Times required to evaluate the whole matrix for different wavenumbers κ.

The origin is omitted because the matrix is undefined for κ = 0.

0 1 2 3

-1

0

1

Re(κ)

Im
(κ

)

0.00

1.00

2.00

3.00

4.00 ·10−2

ti
m

e
[s

]

around the origin stands out, but it is avoided anyway as it is numerically difficult due to

the singularity of the Hankel function and does not contain any eigenvalues of interest.

There is a clear jump at the real axis. The required time for κ with negative imaginary

part is up to two times greater than for non-negative imaginary parts because evaluating

the Hankel function is more expensive. Other than that, the domain around the real

axis is quite smooth. Assuming the number of tasks can be chosen so that it divides N,

cyclical distribution of summands will balance out the workload well enough. There

can still arise a slight imbalance because for even N there are two nodes that lie directly

on the real axis where evaluation is cheap. Thus there are more cheap summands than

expensive ones. Figure 3.2 shows the cyclical distribution of 16 summands to four tasks.

Process 0 is assigned one more cheap summand and one fewer expensive summand.

Optimal assignment is supposedly an NP-complete problem. Trying to improving on

the cyclical heuristic is unlikely to be worth the effort.

Considering Amdahl’s Law [1], where the achievable speedup is constrained by the

part of the program that is not parallelized, strong scaling is expected for this first ap-

proach. However, workload imbalance will have a negative impact. And the number

of cores that can be engaged this way is constrained by the (typically not very high)

number of summands N. There is no communication necessary during computation,

but the reduce operation at the end introduces some overhead. Due to these restrictions,

analysis of the matrix evaluation itself is warranted.

32

3.7. Parallelization

Figure 3.2.: Cyclical distribution of 16 nodes to four parallel tasks (p0-3) for contour

integrals in Beyn’s method. A circle is used as the contour (dashed line).

Re(κ)

Im(κ)

p0×

p1×

p2
×

p3

×

p0

×

p1

×

p2 ×
p3 ×

p0

×

p1

×

p2

×

p3

×

p0
×

p1
× p2
×

p3
×

3.7.3. Parallelization of Matrix Evaluation

The evaluations for each matrix element are again completely independent and there-

fore trivially parallelizable. Each task is assigned a set of matrix elements to evaluate.

This requires each task to know the discretized boundary (or at least those points of

the boundary that correspond to the assigned matrix elements). The quadrature rou-

tine uses some small amount of memory in each task. The part of the program that is

not parallelized is only slightly larger than for the first approach, so strong scaling is

expected for this approach as well. There is no communication necessary while evalu-

ating each matrix element, but the results have to be gathered into one matrix for further

processing.

Figure 3.3 shows the time required to evaluate each element of the matrix. The mod-

ified equipotential with three base points was used as the shape of the boundary. A

coarser than usual discretization was chosen for the diagram and symmetry was not ex-

ploited, so every matrix element was evaluated. Multiple patterns are noticeable. As

discussed in Section 2.1.2, elements in columns with even index consist of two inte-

grals whereas elements in columns with odd index consist of only one integral. This

causes regular vertical stripes in the diagram. The matrix elements where the integrand

contains a singularity lie on the diagonal or the first sub- and superdiagonal. There is a

wide band around the three diagonals where computation is faster, although the diago-

nals themselves are a bit slower due to the treatment of the removeable singularity. By

distributing matrix elements by row, both these effects will be balanced out. The shape

of the band around the diagonal follows the shape of the boundary of the domain. Points

33

3. Implementation

Figure 3.3.: Times required to evaluate each matrix element.

0 20 40 60
0

20

40

60

Columns

R
o
w

s

0.20

0.40

0.60

0.80

1.00 ·10−4

ti
m

e
[s

]

near the inward bulge of the boundary are closer together as points are generated with

equidistant angles. Cyclical row distribution is used to counteract this. A few isolated

rows of the matrix contain many elements that are slower than the surrounding rows.

This last effect has yet to be fully explained but a cyclical distribution should be able to

smooth this out as well. It is trivial to choose a matrix size that is divided by the number

of tasks.

Exploiting the symmetries introduces a complication. Only a segment of the bound-

ary is considered now. Unlike the whole boundary, this segment is not cyclical. Matrix

elements corresponding to both end points of the segment have to be explicitly evalu-

ated. Symmetry can be used to decrease either the number of rows or the number of

columns in the matrix to the number of points in the segment. As the segment must

include a whole number of intervals, the number of points in the segment will always be

odd. If the number of columns is reduced through symmetry, the rows will be as easy to

distribute as before but rows will require vastly different amounts of work as e.g. the di-

agonal band is not included in some rows. If the number of rows are reduced, balanced

row distribution is complicated. In the latter case, a simple fix is available. Cyclical

row distribution is used for all but the last row. The last row is distributed by columns.

Block-cyclical column distribution is used on the last row. Block size must be even to

counteract the effect of alternating between interval mid and end points. Smaller blocks

improve workload balance while increasing overhead. Optimal block size depends on

the implementation.

The approach of parallelizing matrix evaluations is more fine-grained than the first

one. This generally introduces more overhead due to task management. Due to cyclical

row distribution, the number of CPUs that can be enganged is theoretically limited by

34

3.7. Parallelization

the number of rows n/s where n is the number of collocation points and s is the degree

of symmetry. In case the number of workers crosses that boundary, rows could be

partitioned. However, this contingency is not considered in this work as the number

of rows is generally large enough. Due to the high degree of parallelism and sparse

communication, strong scaling is expected. A high degree of symmetry reduces the

overall work to be distributed which has a positive effect on total runtime but should

have a negative effect on scaling.

3.7.4. Realization

The two approaches can be combined in order to compensate each approach’s disadvan-

tages. This scheme is expected to scale well to a large number of cores. For realizing

the scheme, the choice of framework is the most important. Generally there are three

different types of parallelization framework available:

• Shared memory (e.g. threads, OpenMP)

• Distributed memory (usually MPI)

• GPU (e.g. CUDA, OpenCL)

The fine-grained approach of parallelizing the matrix evaluation was implemented

using OpenMP. As the matrix is already naturally processed row by row for cache ef-

ficiency reasons, implementation is almost as simple as a single omp parallel for

directive. In case of symmetric shapes, the last row is isolated from the loop and par-

allelized on its own (but inside the same OpenMP parallel region to reduce overhead).

Static scheduling with block size one is chosen for the row distribution to achieve the

discussed workload balancing. Static scheduling is used for the column distribution of

the last row as well. To avoid false sharing, block size is chosen so that blocks are

aligned to cache lines. The 64 B L1 cache lines of the target system fit four double

precision complex numbers, so block size should be a multiple of that number. Exper-

iments suggest eight might be optimal but the difference is barely measurable as the

computation dominates memory accesses.

A reduction of a status code is performed at the end of the parallel region for handling

errors. Other than that no communication or synchronization is necessary, so overhead

is low. But the number of workers is limited by the number of cores in a single computer.

Note that BLAS/LAPACK operations are already implicitly shared memory parallel in

any efficient implementation. Therefore, effectively the whole evaluation of the inte-

grand in Beyn’s algorithm for one value κ is parallelized.

In principle, the structure of the computation with a large number of small and com-

pletely independent units of work is a good fit for GPUs. However, implementation in

35

3. Implementation

Figure 3.4.: Communication scheme for the MPI parallelization. A master process and

one or more slaves cooperate in the evaluation of eigenvalues by distribut-

ing the computation of contour integrals in Beyn’s method. The processes

communicate (dashed lines) using collective operations only.

B
E

Y
N

A
L

G
O

R
IT

H
M

Master

Compute

integrals

SVD /

Rank test

Rank test?

Compute

eigenvalues

Optimization

step

Converged?

Slave(s)

Compute

integrals

Rank test?

Shutdown?

Success

Yes

Fail

No

Success

Yes

Fail

No

Reduce sum

Broadcast test result

Broadcast parameters

Broadcast shutdown

36

3.7. Parallelization

e.g. CUDA is much more effort, especially because implementations for quadrature and

Hankel functions are hard to find.

Beyn’s method is parallelized using MPI to increase the number of available cores

by using multiple compute nodes of a cluster. This also increases the available mem-

ory to offset the fact that each task requires memory for multiple matrices. Figure 3.4

shows the fairly simple communication scheme. There is a master task and a number

of slaves. The master performs the actual optimization. Initial parameters are known to

each process. Using the parameters, generating the discretized boundary is very quick,

so there is no need to broadcast the points. The first rank iteration of Beyn’s algorithm

is started. Each slave and the master compute the local results for the contour inte-

grals for the values κ it was assigned. Two sum reduce operations produce the final

contour integrals. The master performs singular value decomposition and the rank test

and signals the slaves to continue with the next rank iteration if necessary. Otherwise

the master computes the eigenvalues that are the optimization objective, performs the

optimization step and broadcasts the parameter values for the next optimization iter-

ation. These steps repeat until the optimization converges, at which point the master

broadcasts special values (e.g. NaN) as parameters to signal the slaves to shut down.

Only collective operations (MPI_Broadcast, MPI_Reduce) are used in the scheme.

Error handling has been omitted from the diagram for simplicity. In the actual imple-

mentation, MPI_Allreduce with operand MPI_MAX is used to exchange a status code

instead of broadcasting the rank test result. So almost no additional communication is

necessary.

3.7.5. Experiments

Various experiments were performed on the JURECA cluster to analyze the quality

of the parallelization schemes and their realization. The two approaches are analyzed

individually and in conjunction. All the experiments were performed with discretization

parameters n = 1152 and N = 48. This constitutes a realistic workload with high

precision results (see Section 4.1). The parameter n is chosen so that the maximum

number of cores of a compute node (24 physical, 48 virtual) divides n/s for all degrees

of symmetry s ∈ {1, 2, 4, 6} that are relevant in this work so that results are comparable

and the effect of symmetry on scaling can be deduced. The same shape of symmetry 6 is

used for all experiments, but symmetry is disabled for some. Each experiment consists

of one eigenvalue evaluation, i.e. approximately one objective function evaluation. Each

measured time is the average of five measurements performed in a single run of the

program. Initial setup for MPI (e.g. MPI_Init), OpenMP (e.g. thread creation) and

the application (e.g. I/O, allocation of reusable memory) is excluded from measurment.

OpenMP threads are warmed up before measurement to avoid the typical jitter in the first

parallel region. One time setup is small enough to amortize over a full optimization run

37

3. Implementation

because the objective function is called many times. The standard metrics of speedup

S (p) =
Runtime of sequential program

Runtime of parallelized program with p Threads/Processes

and efficiency

E(p) =
S

p

are used to interpret the results.

Table 3.5 and Figure 3.5 show the results of measuring the runtime of the OpenMP

parallelized program with increasing number of threads. As expected, the program

scales well up to the maximum number of threads. Even the use of simultaneous mul-

tithreading is beneficial with a speedup of about 1.2 for 48 threads compared to 24

threads. There is an initial drop in efficiency, but scaling is almost linear after that. This

suggests that the workload is well balanced. A trace of the program with 12 threads gen-

erated using Score-P [16, 24] and analyzed in Vampir [27] shows an average of around

1.6 % of the time inside the parallel region that is spent waiting for the other threads

to complete their work. About 1.5 % of the total program runtime are spent outside of

parallel regions. If symmetry is not exploited, there is more work to be done, so scaling

is slightly better. It is close enough that it is ignored in the analysis of the remaining

performance experiments.

The scaling of pure MPI applications (i.e. no multithreading) changes when the pro-

cesses are run all on the same machine or each on a different node of a cluster. Appli-

cations that are heavy on communication can benefit from avoiding the network layer

and sending data in memory only. But processes on the same machine contend for re-

sources in the operation system or hardware (e.g. CPU cache). Table 3.6 and Figure 3.7

show the scaling of the MPI parallelized eigenvalue evaluation in both these cases (the

number of nodes was limited so as to not use up too many resources on the cluster). It

was already mentioned that the scheme is low on communication. Therefore, it is not

particularly surprising that scaling is better when each process runs on its own node. Of

course a lot of CPU resources are wasted that way, so it is still not recommended. But

the very strong scaling gives an indication that the scaling of the program is at this point

more limited by the system than by the communication scheme and implementation.

At 48 nodes, scaling drops of significantly as one node calculates only one summand

and cyclical distribution does not balance the workload anymore. Scaling of multiple

processes on one node is very similar to the OpenMP parallelization up to 24 cores.

SMT is used much more efficiently by the OpenMP version, likely because data can

be shared by the virtual cores but also because each process only evaluates one sum-

mand, so expensive and cheap summands cannot balance out. As has been discussed in

Section 3.7.2, workload is not perfectly distributed as the first process is assigned one

more cheap and one fewer expensive nodes. For 12 processes, Score-P/Vampir shows

38

3.7. Parallelization

Table 3.5.: Scaling of OpenMP parallelized eigenvalue evaluation with the number of

threads when using symmetry (first number) or not using symmetry (second

number).

#Threads Time Speedup Efficiency

1 519.26 / 3,072.60 1.00 / 1.00 1.00 / 1.00

2 274.12 / 1,601.99 1.89 / 1.92 0.95 / 0.96

4 150.41 / 876.24 3.45 / 3.51 0.86 / 0.88

8 76.24 / 444.99 6.81 / 6.90 0.85 / 0.86

12 51.09 / 296.93 10.16 / 10.35 0.85 / 0.86

24 26.21 / 151.27 19.81 / 20.31 0.83 / 0.85

48 22.12 / 126.05 23.48 / 24.38 0.49 / 0.51

Figure 3.5.: Scaling of OpenMP parallelized eigenvalue evaluation with the number of

threads.

1 4 8 12 24 48

10

20

30

40

50

p

S
(p

)

With symmetry

Without symmetry

Ideal linear scaling

(a) Speedup

1 4 8 12 24 48
0

0.2

0.4

0.6

0.8

1

p

E
(p

)

With symmetry

Without symmetry

Ideal linear scaling

(b) Efficiency

39

3. Implementation

an idle time of around 10 % for that process. The remaining processes are well be-

lanced, however, with an average idle time of around 2.5 % which includes both waiting

for the other processes to finish their assigned work before the collective reduce can be

performed as well as waiting for the master to perform the rest of the computation.

In hybrid parallel applications, i.e. applications that make use of both MPI and

OpenMP, both the number of processes and the number of threads per process can be

controlled. Based on the scaling behavior of the OpenMP implementation it is clear that

all the available cores of a machine should be used. But these cores can be distributed

to any number of MPI processes, e.g. four processes with 12 cores each. In a cluster,

there will be an optimal number of processes per node that might depend on the number

of overall processes (i.e. the number of nodes). Table 3.7 shows runtimes for different

number of nodes and processes per node. When only a few nodes are used there is ben-

efit to running two or even four processes on each node. One process per node increas-

ingly breaks away as the number of total processes (#Nodes × #Processes Per Node)

approaches the maximumg number N = 48. Note that e.g. 8 nodes × 4 processes = 32

does not divide N, so the comparison is not always fair. Figure 3.9 shows speedup and

efficiency for increasing number of nodes when using one process per node. There is a

slight dip in efficiency at 8 and 16 nodes where workload is less well balanced and just

like in the pure MPI experiment, scaling drops off at 48 nodes as cyclical distribution

degenerates. But in general the program makes good use of additional resources. A

more flexible distribution of work (e.g. two or more processes evaluate the matrix for

one κ together) would allow to increase the number of maximum processes beyond N

and improve the workload balance for e.g. 8 or 16 nodes. Higher parallelism can also

be used to offset higher values of N to keep the time close to constant when results of

higher accuracy are required.

40

3.7. Parallelization

Table 3.6.: Scaling of MPI parallelized eigenvalue evaluation with the number of pro-

cesses when every process runs on the same compute node (first number) or

on its own compute node (second number).

#Processes Time Speedup Efficiency

1 519.26 / 519.26 1.00 / 1.00 1.00 / 1.00

2 271.47 / 262.96 1.91 / 1.97 0.96 / 0.99

4 148.60 / 131.63 3.49 / 3.94 0.87 / 0.99

8 75.61 / 66.20 6.87 / 7.84 0.86 / 0.98

12 51.03 / 44.66 10.18 / 11.63 0.85 / 0.97

24 26.62 / 23.23 19.51 / 22.36 0.81 / 0.93

48 24.08 / 13.91 21.56 / 37.34 0.45 / 0.78

Figure 3.7.: Scaling of MPI parallelized eigenvalue evaluation with the number of pro-

cesses.

1 4 8 12 24 48

10

20

30

40

50

p

S
(p

)

One node

Separate nodes

Ideal linear scaling

(a) Speedup

1 4 8 12 24 48
0

0.2

0.4

0.6

0.8

1

p

E
(p

)

One node

Separate nodes

Ideal linear scaling

(b) Efficiency

41

3. Implementation

Table 3.7.: Scaling of hybrid parallelized eigenvalue evaluation with the number of

nodes (rows). The cores of each node (48) are distributed to a varying num-

ber of processes per node (columns).

#Processes per Node

#Nodes 1 2 4

1 22.12 21.20 21.15

2 11.12 10.77 10.66

4 5.62 5.41 5.71

8 2.82 3.01 3.55

12 1.90 2.41 2.33

16 1.51 2.00

24 1.00 1.59

48 0.61

Figure 3.9.: Scaling of hybrid parallelized eigenvalue evaluation with the number of

nodes. One process per node uses all available cores for OpenMP.

1 4 8 12 16 24 48

10

20

30

40

50

p

S
(p

)

Hybrid parallel

Ideal linear scaling

(a) Speedup

1 4 8 12 16 24 48
0

0.2

0.4

0.6

0.8

1

p

E
(p

)

Hybrid parallel

Ideal linear scaling

(b) Efficiency

42

4. Numerical Results

With the program presented in the previous chapter, it is now possible to efficiently

compute interior Neumann eigenvalues to a high degree of accuracy. Tests of the pro-

gram with increasingly fine discretization will demonstrate convergence. This allows

estimating the fineness necessary to compute eigenvalues with a desired tolerance. Fur-

ther experiments will explore the spectrum of eigenvalues and the parameter space. This

information will be used to set up and run the optimization with the goal of improving

the maximal value and accuracy of previous results.

4.1. Convergence

There are two major discretization parameters that need to be tuned, the number of

collocation points n used to discretize the boundary of the domain D and the number of

trapzoidal rule nodes N used to calculate the integrals for Beyn’s algorithm. Analyzing

the error progression of experiments with values for n and N that increase by a factor of

two in each step allows estimating the rate of convergence using the formula

q =
log en/en/2

log 1/2

where en is the error of the numerical value for n point discretization.

The best way to verify correctness of method and implementation and establish the

rate of convergence is to compare the numerical results of the program with exact an-

alytical values. Then an absolute error can be computed easily. For the disk with area

one the eigenvalues are [12, Section 3.2]

λpq = π j′2pq

where j′pq is the q-th real positive zero of J′p, the first derivative of the Bessel function of

the first kind of order p. Eigenvalues are simple for order p = 0 and have multiplicity

2 for p > 0. Numerical values with three decimal digits can be found in [23, Table 1].

Higher precision values can be computed using a root finding algorithm, e.g. Maple™’s

fsolve function [19]. The first seven eigenvalues in order are 10.64987, 10.64987,

29.30592, 29.30592, 46.12477, 55.44907, 55.44907.

The disk is described by shape E1. The parameters α and c have no effect on the shape

of the disk, only on radius and area. Therefore, the normalized eigenvalues λ2
k
|E1| are

43

4. Numerical Results

Table 4.1.: Computed first interior Neumann eigenvalue λ(n,N)

1
for the disk (E1), absolute

error and estimated convergence rate q with a variable number of collocation

points n and fixed Beyn integral discretization N = 48. The exact value

λ1 = 10.6498662587 is used to calculate the absolute error and estimated

convergence rate q. The imaginary part converges to zero at estimated rate

qi.

n λ(n,N)

1

∣

∣

∣λ(n,N)

1
− λ1

∣

∣

∣ q qi

144 10.649875733785−0.000035410068i 3.67·10−5

288 10.649867333064−0.000004363729i 4.49·10−6 3.03 3.02

576 10.649866354474−0.000000541715i 5.50·10−7 3.03 3.01

1,152 10.649866260316−0.000000067454i 6.75·10−8 3.03 3.01

2,304 10.649866256236−0.000000008358i 8.71·10−9 2.95 3.07

4,608 10.649866257708−0.000000001030i 1.41·10−9 2.62 3.00

9,216 10.649866258387−0.000000000118i 3.13·10−10 2.18

independent of the choice of parameters. Table 4.1 shows the result of computing the

first eigenvalue with increasing n. The other parameter N is fixed and high enough so

that the absolute error is dominated by n and the computed value actually approaches the

exact value. Experiments in [6, Section 4.2] and later in this work suggest that N = 48 is

sufficient for this. The error starts out quite small even for small n and decreases nicely.

Convergence is approximately cubic, although it flattens out at the end. The absolute

error cannot be expected to decrease indefinitely as it is limited among others by the

quadrature error of the integrals that make up the matrix Aκ. Adaptive quadrature was

used to achieve a relative and absolute tolerance of 10−10.

The picture is very similar for other eigenvalues and shapes, so only one more will

be discussed in detail. Table 4.2 shows the computed third eigenvalue for shape E3{c =
1.6833, α = 2.0171}. No exact eigenvalues are known for this shape, so the most precise

computed value was used in place of the exact value to calculate the error and conver-

gence rate. Convergence is again approximately cubic but the error starts out greater

than for the disk. This can be explained with the decreased regularity of the shape. The

eigenvalue is real, so the exact value for the imaginary part is zero. The imaginary part

for the third eigenvalue in Table 4.2 decays at the same rate as for the first eigenvalue in

Table 4.1 and as the absolute error.

For fixed n and increasing N, the computed eigenvalues are not expected to converge

to the exact eigenvalues listed above of the infinite dimensional differential operator.

Rather it should converge to the generalized eigenvalue of the discretized n × n matrix

valued operator. The program currently does not support arbitrarily high values of n so

it is not possible to confirm convergence to the exact value. Table 4.3 lists the computed

44

4.1. Convergence

Table 4.2.: Computed third interior Neumann eigenvalue λ(n,N)

3
for shape E3{c =

1.6833, α = 2.0171} with a variable number of collocation points n and fixed

Beyn integral discretization N = 48. The last (and presumably most precise)

value is used in place of the unknown exact value to calculate the absolute

error and estimated convergence rate q. The imaginary part converges to

zero at estimated rate qi.

n λ(n,N)

3

∣

∣

∣λ(n,N)

3
− λ(9216,N)

3

∣

∣

∣ q qi

144 32.893775916244−0.001951220319i 2.01·10−3

288 32.893365429054−0.000225008217i 2.33·10−4 3.11 3.12

576 32.893313215505−0.000026937655i 2.79·10−5 3.06 3.06

1,152 32.893306839241−0.000003293325i 3.39·10−6 3.04 3.03

2,304 32.893306087231−0.000000407030i 4.11·10−7 3.05 3.02

4,608 32.893306004644−0.000000050524i 4.49·10−8 3.19 3.02

9,216 32.893305997190−0.000000006285i 0.00·100 3.06

Table 4.3.: Computed first interior Neumann eigenvalue λ(n,N)

1
for the disk and absolute

change from the previous row with variable Beyn integral discretization N

and a fixed number of collocation points n = 9216.

N λ(n,N)

1

∣

∣

∣λ(n,N)

1
− λ(n,N/2)

1

∣

∣

∣

6 10.649662123158−0.000252587437i

12 10.649866247926+0.000000004369i 3.25·10−4

24 10.649866258387−0.000000000118i 1.14·10−8

48 10.649866258387−0.000000000118i 8.15·10−15

96 10.649866258387−0.000000000118i 8.41·10−14

Table 4.4.: Computed third interior Neumann eigenvalue λ(n,N)

3
for the shape E3{c =

1.6833, α = 2.0171} and absolute change from the previous row with vari-

able Beyn integral discretization N and a fixed number of collocation points

n = 9216.

N λ(n,N)

3

∣

∣

∣λ(n,N)

3
− λ(n,N/2)

3

∣

∣

∣

6 32.835359922288+0.031227701024i

12 32.893095101843+0.000075891936i 6.56·10−2

24 32.893305995091−0.000000005433i 2.24·10−4

48 32.893305997190−0.000000006285i 2.27·10−9

96 32.893304827425−0.000001644377i 2.01·10−6

45

4. Numerical Results

first eigenvalue for the disk. It also calculates the absolute difference between the current

row N and the previous row N/2. Matching the theoretical exponential error decay

proven by Beyn [6, Corollary 4.8] the number of digits that are fixed approximately

increases with a constant factor. Convergence almost stops at N = 24 with only tiny

changes afterwards. The finest discretization N = 96 shows small signs of cancellation

as the change increases slightly in the last row. This effect is more pronounced for the

third eigenvalue for shape E3{c = 1.6833, α = 2.0171} (Table 4.4). Here, the error

decreases exponentially as well but the error starts out greater than for the disk just as it

was with variable discretization parameter n.

This work aims to provide eigenvalues with six digits precision. For this, the experi-

ments suggest discretization parameters of n = 1152 and N = 48. Both of these values

include a small safety cushion. Both for n and N, the error in the third eigenvalue is

higher than in the first eigenvalue. It may also depend on the shape parameters. As

Beyn [6, Corollary 4.8.] has shown, the error also depends on the distance of the eigen-

value from the chosen contour. Higher N allows some lattitude in that choice. Spurious

eigenvalues are also more likely to appear for smaller N. Even with these cautious val-

ues, it is advisable to check the precsion of the result after optimization as this does not

take much time or effort.

4.2. Spectrum and Parameter Space

For choosing the contour for Beyn’s algorithm and selecting the eigenvalue to optimize

from the set of eigenvalues returned it is necessary to look at the whole spectrum of

eigenvalues and how it changes with the shape parameters.

Table 4.5.: Real interior Neumann eigenvalues for the disk

1 2 3 4 5 6 7

10.6499 10.6499 29.3059 29.3059 46.1248 55.4491 55.4491

For the disk, the parameters have no influence on the normalized eigenvalues. The

spectrum is accurately reproduced by the program for any set of parameters as shown in

Table 4.5.

For other equipotential shapes, the parameters influence both value and multiplicity

of eigenvalues. Two more examples will be discussed, but the picture is similar for all

of them. For shape E3 (Table 4.6), the third, fourth and fifth eigenvalues are noticeably

closer in the second column (c = 2.0) than in the first column (c = 1.0). The third

eigenvalue seems to always be at least of multiplicity two. As the third and fourth

eigenvalue increase, the fifth eigenvalue decreases. The maximum is expected where

the two lines touch or cross (note the switching of multiplicities of seventh, eighth, and

46

4.2. Spectrum and Parameter Space

Table 4.6.: Real interior Neumann eigenvalues for shape E3.

k

α = 1.0

c = 1.0

α = 1.0

c = 2.0

α = 2.0

c = 1.0

1 10.1172 8.5687 8.9838

2 10.1172 8.5687 8.9838

3 30.0851 32.5409 31.6770

4 30.0851 32.5409 31.6770

5 40.5097 33.4469 35.4411

6 54.0537 50.4431 49.9877

7 64.1796 66.3616 68.9967

8 77.4457 66.3616 68.9967

9 77.4457 79.6949 76.5971

10 101.2274 101.7737 105.0557

11 101.2274 101.7737 105.0557

nineth eigenvalue). The third eigenvalue then has multiplicity three, just as reported by

Antunes and Oudet [4, Table 2]. For all listed sets of parameters, the third eigenvalue is

above 30 and far away both from the current and the maximum second eigenvalue. So

if the eigenvalue to be optimized is heuristically selected as the first above 30, any of

the sets can be used as starting values. The middle column is already quite close to the

maximum.

For shape E6 (Table 4.7), Antunes and Oudet report the maximum sixth eigenvalue

to be of multiplicity four. The sixth, seventh, eighth and nineth eigenvalues are signifi-

cantly closer together in the second column than in the first and will likely be identical at

the maximum. The space between fifth and sixth eigenvalue is again easily wide enough

to distinguish them. However the value of 57.4477 in the first column is not far away

from the maximum of the fifth eigenvalue. Even though that maximum was achieved

with a different shape, a conflict at least cannot be ruled out. Therefore, the first column

seems like an unreliable starting value. Either of the second or third column are useable.

In order to find good starting values and predict how well the optimization will per-

form, the parameter space can be probed. The influence of each parameter isolated on

the eigenvalues is fairly simple (e.g. Figure 4.1 for λ4). All parameters change roughly

on the same scale. The slopes of ǫ and δ are slightly but not orders of magnitude steeper.

Most parameters exhibit a singe clear peak, at least on the coarse grid used here. Opti-

mization of single parameters is expected to work very well without danger of premature

termination or getting stuck in a local optimum. Parameter α is the exception, as de-

pending on the other parameters there may not be a peak or only a very flat one. There

is therefore a danger that α runs away and the optimizer gets stuck at extreme values. A

47

4. Numerical Results

Figure 4.1.: Influence of individual parameters on interior Neumann eigenvalue λ4 (ver-

tical axis in all subfigures) for shape E4 with other shape parameters fixed.

1.5 2 2.5 3
40

42

44

c

α = 2.0
α = 2.5

1.5 2 2.5 3
40

42

44

α

c = 2.0
c = 2.5

−0.8 −0.6 −0.4 −0.2 0 0.2

36

38

40

42

44

ǫ

c = 2.0, α = 2.7
c = 1.7, α = 2.0

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

36

38

40

42

44

δ

c = 2.0, α = 2.7
c = 1.7, α = 2.0

48

4.3. Optimization

Table 4.7.: Real interior Neumann eigenvalues for shape E6.

k

c = 1.0

α = 1.0

c = 2.0

α = 1.0

c = 1.0

α = 2.0

1 9.9420 8.7558 8.4829

2 9.9420 8.7558 8.4829

3 30.2906 29.5970 28.7474

4 30.2906 30.7791 31.2093

5 38.2583 30.7791 31.2093

6 57.4477 64.8949 63.4889

7 63.6715 67.4167 66.8065

8 75.4295 67.4167 66.8065

9 75.4295 68.8665 71.2289

10 102.5517 98.0234 93.4450

11 102.5518 98.0234 93.4450

good choice of starting value for the other parameters can prevent this. Parameter ǫ is

only valid in a limited range. If the base points move too far apart, the shapes become

no longer simply connected which the program currently cannot handle. The result of

optimization has to be carefully checked for plausibility.

Even though each single paramater is well behaved, the combined multidimensional

parameter space is as usual more complex. The different peaks for single parameters

depending on the fixed values of other parameters in Figure 4.1 already hint at this. For

the two original parameters c and α (e.g. Figures 4.4 and 4.3), the space is still well

behaved in most areas but local optimums where the optimizer gets stuck or flat regions

where the optimizer prematurely terminates cannot be ruled out. This is even more true

for higher dimensional space (up to seven for shape E5.) This can be countered, but

not completely prevented, by using multiple different starting values and restarting the

optimization with larger step size after it terminates. Probing the whole parameter space

as in Figures 4.3 and 4.4 to find good starting values is impossible in higher dimensions

due to the exponential cost. Random sampling on the other hand is able to cover the

space well enough at much lower cost. The result of optimization in lower dimensions

is sometimes a good starting value as well.

4.3. Optimization

With the knowledge about convergence and parameter space, the optimization can be

set up and performed. Discretization parameters n = 1152 and N = 48 are used except

where specially noted. Multiple different starting values are chosen as close to the max-

49

4. Numerical Results

Figure 4.3.: Influence of parameters c and α on interior Neumann eigenvalue λ3 for

shape E3.

1 1.2 1.4 1.6 1.8 2 2.2 2.4
1.5

2

2.5

3

c

α

30.50

31.00

31.50

32.00

32.50

λ
3

Figure 4.4.: Influence of parameters c and α on interior Neumann eigenvalue λ4 for

shape E4.

1.6 1.8 2 2.2 2.4 2.6 2.8 3
1.5

2

2.5

3

c

α

40.00

41.00

42.00

43.00

λ
4

50

4.3. Optimization

imum as possible by probing the parameter space as in Section 4.2. The optimizer (an

implementation of the Nelder-Mead simplex algorithm [20]) is set to terminate when

both the size of the simplex and the improvment of the eigenvalue are below 10−6. To

rule out premature termination or local optimums, the size of the simplex is reset to its

initial value and the optimizer is restarted as long as the maximum improves signifi-

cantly between restarts. The initial step size of 0.1 in all dimensions should be sufficient

to get the optimizer out of difficult regions while avoiding degenerated shapes. For two

dimensional parameter space, the restart usually did not improve the result as the pa-

rameter space is sufficiently simple. Optimization terminated after only a few hundred

iterations. For higher degrees of freedom at least the first restart provided significant

gains. Termination often required thousands of iterations. The results are checked for

convergence with more collocation points. Optimization is restarted from that result

with higher precision in case that convergence check is not succesful. The target is a

precision of at least six significant digits for each eigenvalue. The values are truncated

after the sixth digit. The parameters are given with a greater number of significant digits

so that the results can be reliably reproduced.

This work tries to reproduce or improve the maximal eigenvalues λk for k = 3, 4, 5, 6,

10 from previous works. Antunes and Oudet [4] give results of (multiplicity in brackets)

32.90 (3), 43.86 (3), 55.17 (3), 67.33 (4), and 114.16 (5) using more than 30 unknown

Fourier coefficients. Using equipotentials in parameters α and c, Kleefeld [15] improved

the third and fourth eigenvalue to 32.9018 and 43.8694. There is some uncertainty as to

the precision of the results given by Antunes and Oudet. The values given in their paper

for the first and second eigenvalue deviate by about 10−2 from the known theoretical

values of 10.65 and 21.30 (rounded to two decimal places). While the second value is

too low, which may just be an issue of optimization, the first value is too high. It was

not possible to try to reproduce their results as the parameters are not included in the

paper. Any comparison to new results can therefore only be tentative.

Using only the two original parameters from Kleefeld, his results for λ3 = 32.9018

and λ4 = 43.8693 could be reproduced (albeit with slightly different parameters) but

not improved. For higher eigenvalues, two parameters proved insufficient. The value

of λ5 = 54.5401 is still a long way from the optimum of 55.17 found by Antunes and

Oudet. The multiplicity three is also not reproduced. On the other hand, λ6 = 67.0440

is closer to the old value of 67.33 and the multiplicity is reproduced. But even so the

old value could not be reached. The result for the tenth eigenvalue is particularly bad.

There is a large gap between the 12th and 13th eigenvalues so that multiplicty five is

not reproduced and the value of 109.988 is way below the previous record of 114.16.

There is no indication that the parameter space is particularly difficult, so the shape

maximizers for the latter three eigenvalues appear to be not modeled well with just two

shape parameters. All the results for two parameters are summarized in Table 4.8.

After switching to the complete array of parameters, λ4 was improved to 43.8700

51

4. Numerical Results

Table 4.8.: Maximum interior Neumann eigenvalues λk for shape Ek with two free shape

parameters.

k c α λk

3 1.687730810 2.019822714 32.9018 32.9018 32.9018

4 2.084610015 2.541256146 43.8693 43.8693 43.8693

5 2.380671137 3.914738607 54.5401 54.5401 56.0889

6 2.849410261 0.660868556 67.0440 67.0440 67.0440 67.0440

10 1.567009307 5.196376634 109.988 109.988 109.988 118.955 118.955

with only very slight deviations from the regular two parameter equipotential through

ǫ and δ. The scheme is similarly succesful for λ6, where the old value 67.33 was at

least reproduced with higher precision in 67.3364, and λ10, with a new value of 114.185

over 114.16. Note that for λ10 it was actually necessary to use 2304 collocation points

because the convergence check at the end showed less than six digits precision. Also

the multiplicity of five is not quite perfect here. The scheme works less well for λ5. The

old value could not be reached. It is not immediately clear whether this is because mod-

ified equipotentials cannot represent the actual shape maximizer, whether the higher

dimensions of the parameter space caused the optimizer to miss the global optimum,

or whether the old value is incorrect. Table 4.9 contains the eigenvalues found by opti-

mization using all parameters. The parameters that achieved these results are listed in

Table 4.10.

It is not suprising that the equipotential shape maximizers (see Figure 4.5) are visu-

ally similar or even identical to the old shape maximizers by Antunes and Oudet (see

Figure 2.5) as the former are heavily inspired by the latter. There is however a clear

difference between the equipotential shapes using just two parameters and those using

all parameters (dotted and solid lines in Figure 4.5, respectively), especially in the re-

gions around the indentations. Even for the fourth eigenvalue, where the two shapes are

almost identical, those regions differ the most. Getting the indentations right appears to

be the main challenge.

52

4.3. Optimization

Table 4.9.: Maximum interior Neumann eigenvalues λk for shape Ek with all shape pa-

rameters free.

k λk

4 43.8700 43.8700 43.8700

5 55.1498 55.1498 55.1498

6 67.3364 67.3364 67.3364 67.3364

10 114.185 114.185 114.185 114.185 114.187

Table 4.10.: Equipotential shape parameters for maximum interior Neumann eigenval-

ues in Table 4.9. Irregularities ǫ and δ applied as in 2.1.

k c α ǫ δ

4 1.942568636 2.751523202 −1.3145316460·10−2 −4.6234670530·10−2

5 1.548694899 2.223124784 −8.8452303300·10−2 −1.9793129920·10−1

−4.5093371990·10−2 −1.6718903350·10−1

−4.3547274900·10−2

6 2.027170345 1.706097040 1.5774070160·10−1 6.0012147050·10−3

10 0.899356409 2.706745797 −4.4817663590·10−2 1.1488839400·100

−2.8284367480·10−1

Figure 4.5.: Equipotential shape maximizers for interior Neumann eigenvalues λ4, λ5,

λ6, λ10 using just two parameters (dotted) and using all parameters (solid).

The shapes for λ4 are almost identical. The shapes are scaled so they all

have the same area.

53

5. Conclusions

The computation of interior Neumann eigenvalues required multiple steps. Using the

Boundary Element Method, a boundary value problem for the Helmholtz equation was

transformed into an integral equation. Discretization yields a homogeneous linear sys-

tem. Each element of the system matrix is an integral that must be evaluated numeri-

cally, although symmetries can be exploited to reduce the amount of work. The singular

nature of the integrand required careful analysis. The singularity was shown to be re-

movable. The matrix depends nonlinearly on the wavenumber κ, so the homogeneous

linear system can be interpreted as a nonlinear eigenvalue problem. Beyn’s method was

employed to calculate the eigenvalues. This method involves evaluating the matrix for

a number of different values of κ.

The above methods were implemented in the C programming language with the help

of different numerical libraries. GSL provided the larger framework and some solvers

for nonlinear equations and integrals. BLAS and LAPACK were used for linear algebra.

Two different parallelization approaches were included in the program. OpenMP was

used to evaluate each element of the matrix in parallel. Additionally, the evaluation

of the matrices for Beyn’s method was parallelized with the help of MPI to enable

computation on the cluster. The distribution of work in both approaches had to be

planned carefully and good workload balance was confirmed with the help of tools like

Score-P/Vampir. The hybrid parallelization proved to be efficient due to the high degree

of parallelism and low communication overhead.

For the shape optimization of the eigenvalues, an existing description of the shape of

the domain of the boundary value problem based on equipotentials was extended with

additional parameters. With between four and seven degrees of freedom, the range of

representable shapes increases significantly while still keeping the number of parame-

ters much lower than more general descriptions. The parameter space is therefore quite

simple. In experiments, the modified equipotential shapes have shown a lot of promise.

New and improved maximums were found for the fourth, sixth and tenth eigenvalue.

Previous optimal values for the third eigenvalue were confirmed. On the other hand, the

optimum shape for the fifth eigenvalue appeared not to be modeled well.

So further tweaks are necessary to derive a candidate for the general description of

shape maximizers. More modifications are possible to the basic concept of equipoten-

tials like the use of different norms and/or exponents in each potential summand. But

it is possible that a completely new idea is required. Results of equipotentials for other

eigenvalues should be insightful. Equipotentials also trivially extend to three dimen-

55

5. Conclusions

sions, where there is a lot of room for exploration. So far only the two-dimensional

problem has been considered. The modular code and high performance of the imple-

mentation allows to quickly test such modifications and extensions. The program might

benefit from e.g. a Python interface so that these modifications can be made in a simpler

environment.

Even though the implementation has demonstrated its quality, some improvements

are certainly possible, particulary regarding performance. Tuning of the basic building

blocks like the Hankel function and quadrature routines has almost certainly not ex-

hausted its potential. Some researchers have extended Beyn’s method by addition of

another random matrix that is multiplied from the left in order to reduce the size of the

system. Convergence of the Boundary Element Method might be improved by a less

naive distribution of collocation points. The workload balance of the parallelization is

not quite optimal yet. But the low hanging fruit have probably been picked, so a de-

termination must be made whether incremental performance gains are worth the not

insignificant investment of development time when that time could be spent on extend-

ing the features of the program instead.

56

A. The shapeopt Program

This chapter descibes how to build and use the program described in this work. The

program must be built from source.

A.1. Dependencies

The following dependencies must be available:

• Intel MKL [13] (tested with 2019.3) or alternatively OpenBLAS with LAPACK

[22]

• GNU Scientific Library [11] (tested version 2.5)

• C compiler (tested GCC and Intel C Compiler)

• Fortran compiler (tested GFortran and Intel Fortran Compiler)

• MPI (optional; tested with Intel MPI and OpenMPI)

On JURECA, the dependencies can all be loaded with these two commands:

1 module load intel-para

2 module load GSL

A.2. Getting the Source Code

The source code is stored in a git repository hosted by the Forschungszentrum Jülich

GitLab Server at the URL

https://gitlab.version.fz-juelich.de/abele2/shapeopt

Clone the project to get a local copy with e.g.

1 git clone https://gitlab.version.fz-juelich.de/abele2/

shapeopt.git

This will create a new directory, shapeopt, that contains the project. The project is

organized as follows:

57

A. The shapeopt Program

• Main directory: build scripts and C source code for program entry point

• Directory src: C source code for numerical computation

• Directory amos: Fortran source code for Amos’ Hankel function implementation

[21]

• Directory doc: Latex project to build this documentation

• Directory CuTest: C unit test framework [8]

• Directory test: C source code for unit tests

A.3. Build

The build process is separated into two stages, configure and make. The configure stage

is controlled by the CONFIGURE script. Running this script on the command line cre-

ates the Makefile that controls the make stage that is executed by calling make. When

changes to the source code are made only the make stage needs to be rerun. Two di-

rectories are created: bin contains the executable, obj contains intermediate compilation

artifacts. Besides the default target all, the Makefile defines targets clean to delete all

artifacts (e.g. if a full rebuild is necessary) and test to build the unit test executable.

The build process can be customized with a number of options. All options must be

given in the format <key>=<value>. The format or <key>+=<value> is supported to

append to existing options. The options can be provided

• as arguments to CONFIGURE (recommended, options only need to be set once on

the first build)

• as arguments to make (options need to be repeated identically on each rebuild)

• as environment variables (not recommended, might cause conflicts, except maybe

for CC and FC).

The supported options are:

• CBLAS: the BLAS/LAPACK implementation; mkl or openblas; default mkl

• ENABLE_MPI: compile with or without MPI; 0 or 1; default 1

• CC: the C compiler, must be compatible to the compiler used by MPI; system

default

• FC: the Fortran compiler; system default

58

A.4. Unit tests

• CONFIG: debug disables compiler optimizations; default empty

• CCPREFIX: prefix C compiler with instrumentation, e.g. Score-P; default empty

• CFLAGS: any flags allowed by the C compiler, but some flags are necessary for

compilation and are overwritten by the makefile

• FCFLAGS: same as CFLAGS but for the fortran compiler

• LDFLAGS: same as CFLAGS but for the linker employed by CC

A typical build on JURECA could look like this:

1 ./CONFIGURE CC=icc FC=ifort

2 make

A.4. Unit tests

The project includes unit tests with at least basic coverage of all functionality. The unit

tests verify correctness of compilation and changes to existing code to a large degree.

CuTest [8] is used as a framework to simplify test creation. Build and run the tests from

the main directory with

1 make test

2 ./bin/shapeopttest

The tests can be run in parallel with mpirun/srun to verify correctness of the MPI

parallelization.

A.5. Using the Program

The program is controlled using a command line interface. The basic call signature

from the main directory is

1 ./bin/shapeopt <mode> [options]

where <mode> is a single string to set the mode of computation and [options] is a

sequence of zero or more options (format -key value) or flags (format -flag). Prefix

the call with mpirun (or srun on JURECA) to run the program in parallel.

Supported modes:

• opt: run a full optimization until convergence

• eval: evaluate the eigenvalues once

59

A. The shapeopt Program

• matr: evaluate the discretized matrix operator once

• contour: generate the collocation points that define the discretized boundary

Options controlling the precision:

• -n <val>: an integer ≥ 4; the number of collocation points on the boundary of

the domain; must fit the symmetry of the selected shape; default 96

• -N <val>: an integer ≥ 4; the number of trapezoidal rule nodes for evaluating

the integrals in Beyn’s algorithm; default 24

Options controlling the shape of the domain (see Equation (2.31)):

• -k <val>: one of 1, 3, 4, 5, 6, 10; the number of equipotential base points; for

optimization also the index of the eigenvalue to be optimized; default 3

• -a <val>: a positive floating point value; the equipotential parameter α; default

2.0171

• -c <val>: a positive floating point value; the equipotential parameter c; default

1.6833

• -i <val>: a space separated list of floating point values; the irregularity of the

position of the equipotential base points; default 0

• -g <val>: a space separated list of floating point values; the irregularity of the

weights of the equipotential base points; default 0

Mode specific options:

• -p <val>: a string containing one or more of the characters “c”, “a”, “i”, “g”; the

shape parameters to be optimized; the other paramaters are fixed; default “caig”

• -r <val>: a floating point value; the tolerance for restarting the optimization

with initial step size after it terminates; no restart if the change from the last run

is less than this tolerance; disable restarts with value <= 0; default 0.0

• -w <val>: a complex number a(+/-)bi where a and b are floating point values;

the wave number; mode matr only; default 1+0i

Diagnostic options:

• -l <val>: an absolute or relative path; path to the file where log messages are

written. The rank of the MPI process is appended to the file name so that each

process has its own log file; by default the log messages are written to the terminal

60

A.5. Using the Program

• -v <val>: one of {0, 1, 2, 3, 4}; the verbosity of the log; 0 = off, 4 =

verbose; default 1 = errors

• -b <val>: integer; perform benchmark of program with a number of iterations;

measures average runtime; benchmark is disable if <= 0; default 0

Example 1: Evaluate the eigenvalues for the shape E3{c = 1.5, α = 2.0} using a bound-

ary discretization of n = 240 (divisible by 12 to fit the symmetry of degree six):

1 ./bin/shapeopt eval -n 240 -k 3 -a 2.0 -c 1.5

Output:

1 Evaluating eigenvalues with shape 3

2 Discretization n = 240, N = 24.

3 Parameter values c = 1.500000, alpha = 2.000000, eps = [],

delta = []

4 Found 6 eigenvalues: 32.570245670692-0.000337077156i

32.570245670959-0.000337074577i

33.522132466595-0.000145065695i

48.276808197998-0.000463165976i

65.624350978805-0.000301023401i

65.624350994504-0.000301020148i

Example 2: Optimize the fourth eigenvalue with respect to shape parameter c with

initial value 1.5. The shape parameter α is fixed to 2.0. Discretization parameter n = 160

is divisible by eight to fit the symmetry of degree four of shape E4:

1 ./bin/shapeopt opt -n 160 -k 4 -p c -c 1.5 -a 2.0

Output:

1 Optimizing eigenvalue 4 w.r.t parameter(s) c.

2 Discretization n = 160, N = 24.

3 Parameter values c = 1.500000, alpha = 2.000000, eps =

[0.000000], delta = [0.000000]

4 Iteration 1: x = [1.8000000000] y = -42.6245635820

5 Iteration 2: x = [2.2000000000] y = -43.3904175962

6 Iteration 3: x = [2.0000000000] y = -43.4593668308

7 Iteration 4: x = [2.1000000000] y = -43.6042227107

8 #...

61

B. Analysis of the Integrand in Maple

Analyzing the integrand for Section 2.1 was done in the mathematical software sys-

tem Maple™, version 2019.0 [19]. For verifiability the worksheet is included on the

following pages.

The worksheet consists of two parts. The first part symbolically computes the limit

of the integrand at the singularity t0 where the function g(t) that describes the boundary

is equal to the collocation point x so that the argument to the Hankel function becomes

zero. The boundary satisfies two conditions that are set in the worksheet: the normal

ν is defined to be orthogonal to g at t0 and g(t0) = x. For greater understanding, the

worksheet also computes the matching limits of the integrand where the Hankel function

has been replaced by alternative representations, a truncated series and the combination

of Bessel functions of the first and second kind.

The second part tests the limit numerically. All symbols must be assigned numerical

values. The function g is now defined as the quadratic interpolation of three points

xi, i ∈ 0, 1, 2. Multiple sets of values for the points xi and the singularity t0 are included

to test the effect of finer discretization and verify that the limit works for singularities at

different positions. The results that are printed at the end use to the last choice for points

and singularity. The table lists the normalized distance |t − t0| from the singularity, the

real distance ‖x − g(t)‖ = ‖g(t0) − g(t)‖ from the singularity, the value of the integrand,

and the absolute difference between integrand and the limit. The integrand approaches

the limit as t approaches t0 up to ‖x − g(t)‖ ≈ 10−7. Numerical cancellation prevents

precise evaluation of the integrand very close to the singularity.

63

> >

> >

(2)(2)

(4)(4)

> >

> >

> >

> >

> >

> >

(5)(5)

(1)(1)

(6)(6)

(3)(3)

r e s t a r t ;

Analysis
n o r m (x - g (t))
N : = t - > s q r t ((x 1 - g 1 (t)) ^ 2 + (x 2 - g 2 (t)) ^ 2) ;

p r o d (x - g (t) , n u)
K : = t - > (x 1 - g 1 (t)) * n 1 + (x 2 - g 2 (t)) * n 2 ;

jacob ian norm(g ' (t))
J : = t - > s q r t ((D (g 1) (t)) ^ 2 + (D (g 2) (t)) ^ 2) ;

d e f i n e n u s o i t i s n o r m a l t o g a t t 0
n 1 : = D (g 2) (t 0) / J (t 0) ;
n 2 : = - D (g 1) (t 0) / J (t 0) ;

d e f i n e s i n g u l a r i t y g (t 0) = x
g 1 (t 0) : = x 1 :
g 2 (t 0) : = x 2 :
#complete genera l in tegrand before d iscret izat ion
F : = - I * k a p p a / 4 * H a n k e l H 1 (1 , k a p p a * N (t)) * K (t) / N (t) ;

integrand using ser ies expansion of HankelH1 at t0
H 1 1 _ s e r i e s : = s e r i e s (H a n k e l H 1 (1 , z) , z = 0 , 1) ;
F _ s e r i e s : = s i m p l i f y (- I * k a p p a / 4 * s u b s (z = k a p p a * N (t) ,
c o n v e r t (H 1 1 _ s e r i e s , p o l y n o m)) * K (t) / N (t)) ;

B. Analysis of the Integrand in Maple

64

> >

(8)(8)

> >

(9)(9)

> >

(7)(7)

integrand us ing the re la t ion HankelH1 = BesselJ + I * BesselY
F _ Y : = - I * k a p p a / 4 * B e s s e l Y (1 , k a p p a * N (t)) * K (t) / N (t) ;
F _ J : = - I * k a p p a / 4 * B e s s e l J (1 , k a p p a * N (t)) * K (t) / N (t) ;

#determine genera l l imi ts
#al l methods should provide the same result
l i m F J : = l i m i t (F _ J , t = t 0) ;
l i m F Y : = l i m i t (I * F _ Y , t = t 0) ;
l i m F s e r i e s : = l i m i t (F _ s e r i e s , t = t 0) ;
l i m F : = l i m i t (F , t = t 0) ;

Numeric Test with Discretization
#g d iscre t i zed : quadra t ic in te rpo la t ion us ing lagrange bas is
polynomials
g 1 : = t - > 2 * (t - 1 / 2) * (t - 1) * x 0 1 - 4 * t * (t - 1) * x 1 1 +
2 * t * (t - 1 / 2) * x 2 1 ;
g 2 : = t - > 2 * (t - 1 / 2) * (t - 1) * x 0 2 - 4 * t * (t - 1) * x 1 2 +
2 * t * (t - 1 / 2) * x 2 2 ;
l i m F ;

65

> >

> >

> >

> >

(9)(9)

(10)(10)

(11)(11)

p o i n t s o n a c i r c l e , f i n e d i s c r e t i z a t i o n
x 0 1 : = c o s (P i / 1 2) :
x 0 2 : = s i n (P i / 1 2) :
x 1 1 : = c o s (P i / 1 2 + 1 / 1 0 0) :
x 1 2 : = s i n (P i / 1 2 + 1 / 1 0 0) :
x 2 1 : = c o s (P i / 1 2 + 2 / 1 0 0) :
x 2 2 : = s i n (P i / 1 2 + 2 / 1 0 0) :
p o i n t s o n a c i r c l e , c o a r s e d i s c r e t i z a t i o n
x 0 1 : = c o s (P i / 1 2) :
x 0 2 : = s i n (P i / 1 2) :
x 1 1 : = c o s (P i / 6) :
x 1 2 : = s i n (P i / 6) :
x 2 1 : = c o s (P i / 4) :
x 2 2 : = s i n (P i / 4) :
s i n g u l a r i t y a t e n d p o i n t 1
t 0 : = 0 :
x 1 : = x 0 1 :
x 2 : = x 0 2 :
l i m F ;

s i n g u l a r i t y a t m i d p o i n t
t 0 : = 1 / 2 :
x 1 : = x 1 1 :
x 2 : = x 1 2 :
l i m F ;

B. Analysis of the Integrand in Maple

66

(12)(12)

> >

> >

s i n g u l a r i t y a t e n d p o i n t 2
t 0 : = 1 :
x 1 : = x 2 1 :
x 2 : = x 2 2 :
l i m F ;

#check the l imi t numer ica l ly
n o t e e l i m i n a t i o n o f p r e c i s i o n c l o s e t o t h e s i n g u l a r i t y
kappa := 5 .2312 + I * 12 .323: # random, kappa is e l iminated f rom
the l imi t anyway
D i g i t s : = 1 6 :
e v a l L i m F : = e v a l f (l i m F) :
p r i n t f (" l i m i t : % . 1 2 f + % . 1 2 f i \ n \ n " , R e (e v a l L i m F) , I m (e v a l L i m F)) ;
p r i n t f (" % - 8 s % - 8 s % - 3 1 s % - 8 s \ n " , " | d t | " , " | d n | " , " F " , " | d F | ") ;
f o r i f r o m 1 t o 8 d o
 d t : = - 1 0 . 0 ^ (- i) : # n o r m a l i z e d d i s t a n c e f r o m s i n g u l a r i t y
 d n : = e v a l f (s q r t ((x 1 - g 1 (t 0 + d t)) ^ 2 + (x 2 - g 2 (t 0 + d t)) ^ 2)) :
rea l d is tance f rom s ingu la r i t y
 e v a l F : = e v a l f (e v a l (F , t = t 0 + d t)) : # f u n c t i o n v a l u e
 d F : = a b s (e v a l F - e v a l L i m F) :
 p r i n t f (" % . 2 e % . 2 e % + . 1 2 f % + . 1 2 f i % . 2 e \ n " , a b s (d t) , a b s (d n) ,
R e (e v a l F) , I m (e v a l F) , d F) :
end:

l im i t : -0 .073212572834+0.000000000000i

| d t | | d n | F | d F |
1 .00e-01 5 .32e-02 -0 .055848932774-0 .009768531796 i 1 .99e-02
1.00e-02 5 .35e-03 -0 .072828156001-0 .000387880560 i 5 .46e-04
1.00e-03 5 .35e-04 -0 .073214267235-0 .000006987004 i 7 .19e-06
1.00e-04 5 .35e-05 -0 .073213414125-0 .000000101006 i 8 .47e-07
1.00e-05 5 .35e-06 -0 .073212666462-0 .000000001321 i 9 .36e-08
1.00e-06 5 .35e-07 -0 .073212582491-0 .000000000016 i 9 .66e-09
1.00e-07 5 .35e-08 -0 .073212579296-0 .000000000000 i 6 .46e-09
1.00e-08 5 .35e-09 -0 .073212633988-0 .000000000000 i 6 .12e-08

67

C. The JURECA Supercomputer

Numerical computations in this work were performed on the supercomputer JURECA

[14] at Forschungszentrum Jülich.

JURECA (Jülich Research on Exascale Cluster Architectures) is a modular system

consiting of a cluster module and a booster module. The characteristics of the cluster

module are listed below. The booster module with Intel Xeon Phi many-core CPUs

was not used for the computations in this work. The standard compute nodes provide

sufficient parallelism and memory.

Hardware Characteristics of the Cluster Module

• 1872 compute nodes

– Two Intel Xeon E5-2680 v3 Haswell CPUs per node

* 2 × 12 cores, 2.5 GHz

* Intel Hyperthreading Technology (Simultaneous Multithreading)

* AVX 2.0 ISA extension

– 75 compute nodes equipped with two NVIDIA K80 GPUs (four visible de-

vices per node)

* 2 × 4992 CUDA cores

* 2 × 24 GiB GDDR5 memory

– DDR4 memory technology (2133 MHz)

* 1605 compute nodes with 128 GiB memory

* 128 compute nodes with 256 GiB memory

* 64 compute nodes with 512 GiB memory

• 12 visualization nodes

– Two Intel Xeon E5-2680 v3 Haswell CPUs per node

– Two NVIDIA K40 GPUs per node

* 2 × 12 GiB GDDR5 memory

– 10 nodes with 512 GiB memory

69

C. The JURECA Supercomputer

– 2 nodes with 1024 GiB memory

• Login nodes with 256 GiB memory per node

• 45,216 CPU cores

• 1.8 (CPU) + 0.44 (GPU) Petaflop per second peak performance

• Based on the T-Platforms V-class server architecture

• Mellanox EDR InfiniBand high-speed network with non-blocking fat tree topol-

ogy

• 100 GiB per second storage connection to JUST

Software Characteristics

• CentOS 7 Linux distribution

• Parastation Cluster Management

• Slurm batch system with Parastation resource management

• Intel Professional Fortran, C/C++ Compiler

– Support for OpenMP programming model for intra-node parallelization

• Intel Math Kernel Library

• ParTec MPI (Message Passing Interface) Implementation

• Intel MPI (Message Passing Interface) Implementation

• IBM General Parallel Filesystem (GPFS) 4.1

70

D. References

[1] Gene M. Amdahl. “Validity of the single processor approach to achieving large

scale computing capabilities.” In: AFIPS Joint Computer Conferences. 1967,

pp. 483–485.

[2] Donald E. Amos. “Algorithm 644: A Portable Package for Bessel Functions of

a Complex Argument and Nonnegative Order”. In: ACM Transactions on Math-

ematical Software 12.3 (Sept. 1986), pp. 265–273. issn: 0098-3500. doi: 10 .

1145/7921.214331. url: http://doi.acm.org/10.1145/7921.214331.

[3] Edward Anderson et al. LAPACK Users’ Guide. Third Edition. Philadelphia, PA:

Society for Industrial and Applied Mathematics, 1999. isbn: 0-89871-447-8.

[4] Pedro R. S. Antunes and Edouard Oudet. “Numerical results for extremal prob-

lem for eigenvalues of the Laplacian”. In: Shape optimization and spectral theory.

Ed. by Antoine Henrot. Berlin, Boston: DeGruyter, May 2017, pp. 398–412. isbn:

978-3-11-055088-7. doi: 10.1515/9783110550887-011.

[5] benchmark. Google LLC. url: https://github.com/google/benchmark.

[6] Wolf-Jürgen Beyn. “An integral method for solving nonlinear eigenvalue prob-

lems”. In: Linear Algebra and its Applications 436.10 (2012). Special Issue ded-

icated to Heinrich Voss’s 65th birthday, pp. 3839–3863. issn: 0024-3795. doi:

10.1016/j.laa.2011.03.030. url: http://www.sciencedirect.com/

science/article/pii/S0024379511002540.

[7] BLAS Technical Forum Standard. url: https://www.netlib.org/blas/

blast-forum.

[8] CuTest: C Unit Testing Framework. url: http://cutest.sourceforge.net.

[9] Mark Galassi et al. GNU Scientific Library Reference Manual. 3rd Edition. Net-

work Theory Ltd., 2009. isbn: 978-0954612078.

[10] Alexandre Girouard, Nikolai Nadirashvili, and Iosif Polterovich. “Maximization

of the second positive Neumann eigenvalue for planar domains”. In: Journal of

Differential Geometry 83 (Jan. 2008). doi: 10.4310/jdg/1264601037.

[11] GNU Scientific Library. url: https://www.gnu.org/software/gsl.

[12] Denis S. Grebenkov and Binh-Thanh Nguyen. “Geometrical structure of Lapla-

cian eigenfunctions”. In: arXiv e-prints (June 2012). arXiv: 1206 . 1278

[math.AP]. url: https://arxiv.org/abs/1206.1278.

71

D. References

[13] Intel Math Kernel Library (MKL). Santa Clara, CA, USA: Intel Corporation. url:

https://software.intel.com/en-us/mkl.

[14] Jülich Supercomputing Centre. “JURECA: Modular supercomputer at Jülich

Supercomputing Centre”. In: Journal of large-scale research facilities 4.A132

(2018). doi: 10.17815/jlsrf-4-121-1. url: https://dx.doi.org/10.

17815/jlsrf-4-121-1.

[15] Andreas Kleefeld. “Shape optimization for interior Neumann and transmission

eigenvalues”. In: Integral Methods in Science and Engineering. Ed. by Chris-

tian Constanda and Paul Harris. Basel: Springer Nature Switzerland AG, 2019.

Chap. 15. doi: 10.1007/978-3-030-16077-7_15.

[16] Andreas Knüpfer et al. “Score-P: A Joint Performance Measurement Run-Time

Infrastructure for Periscope, Scalasca, TAU, and Vampir”. In: Tools for High

Performance Computing 2011. Ed. by Holger Brunst et al. Berlin, Heidelberg:

Springer, 2012, pp. 79–91. isbn: 978-3-642-31476-6. doi: 10.1007/978- 3-

642-31476-6_7.

[17] Rainer Kress. Linear Integral Equation. 3rd ed. Vol. 82. Applied Mathematical

Sciences. New York et al.: Springer, 2014. isbn: 978-1-4614-9592-5. doi: 10.

1007/978-1-4614-9593-2.

[18] LAPACK. url: https://www.netlib.org/lapack.

[19] Maple 2019.0. Waterloo, Ontario: Maplesoft, a division of Waterloo Maple Inc.

url: https://www.maplesoft.com/products/Maple/.

[20] John A. Nelder and Roger Mead. “A Simplex Method for Function Minimiza-

tion”. In: The Computer Journal 7.4 (1965), pp. 308–313. doi: 10 . 1093 /

comjnl/7.4.308.

[21] Netlib Repository Amos. url: https://netlib.org/amos.

[22] OpenBLAS. url: https://www.openblas.net.

[23] Guillaume Poliquin and Guillaume Roy-Fortin. “Wolf-Keller theorem for

Neumann eigenvalues”. In: arXiv e-prints (July 2010). arXiv: 1007 . 4771

[math.SP]. url: https://arxiv.org/abs/1007.4771v1.

[24] Score-P. Virtual Institute - High Productivity Supercomputing (VI-HPS). url:

https://www.vi-hps.org/projects/score-p/.

[25] Gábor Szegö. “Inequalities for Certain Eigenvalues of a Membrane of Given

Area”. In: Journal of Rational Mechanics and Analysis 3 (1954), pp. 343–356.

issn: 19435282, 19435290. url: http://www.jstor.org/stable/24900293.

[26] The NAG Library for C. Oxford, United Kingdom: The Numerical Algorithms

Group (NAG). url: https://www.nag.com.

72

[27] Vampir. Center for Information Services and High Performance Computing

(ZIH), Technische Universität Dresden and Jülich Supercomputing Centre (JSC),

Forschungszentrum Jülich. url: https://vampir.eu.

[28] Hans F. Weinberger. “An Isoperimetric Inequality for the N-Dimensional Free

Membrane Problem”. In: Journal of Rational Mechanics and Analysis 5.4 (1956),

pp. 633–636. issn: 19435282, 19435290. url: http : / / www . jstor . org /

stable/24900219.

[29] Daniel Zwillinger. Standard mathematical tables and formulae. Boca Raton:

CRC Press, 2012. isbn: 978-1439835487.

73

