Impact of emerging radiofluorination methods on preclinical and clinical PET imaging

Bernd Neumaier^{1, 2*}, Boris Zlatopolskiy²

¹Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), 52428 Jülich, Germany

²University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany

*E-mail: b.neumaier@fz-juelich.de

Keywords: [18F]Fluoride, 18F-labeling, PET, Cu-mediated, onium precursor

In recent years we developed the so-called "minimalist" approach to ¹⁸F-fluorination. The term "minimalist" was coined by us due to the exceptional simplicity of this protocol. This ¹⁸F-labeling method requires neither additives nor time-consuming azeotropic drying steps and enables not only the efficient preparation of different prosthetic groups but also clinically relevant tracers [1]. We also adopted this method to Cu-mediated radiofluorination of (aryl)(mesityl)iodonium salts [2]. Thereafter, we focused on the development of simple and efficient protocols for Cu-mediated ¹⁸F-fluorination of boronated and stannyl substrates [3]. This efforts ultimately led to the discovery of alcohol-enhanced Cu-mediated radiofluorination [4]. The novel protocols enabled to produce known radiolabeled aromatic amino acids like 6-[¹⁸F]fluoro-3,4-dihydroxyphenylalanine (6-[¹⁸F]FDOPA), 6-[¹⁸F]fluoro-3-hydroxyphenylalanine (6-[¹⁸F]FMT) and 2-[¹⁸F]fluorophenylalanine (2-[¹⁸F]FPhe) with unmatched efficacy. Furthermore, the novel procedures allowed the preparation of the hitherto unknown but clinically highly relevant tracers like [¹⁸F]fluorotryptophans ([¹⁸F]FTrps), 2-[^{18F}]fluorophenethylamine ([¹⁸F]FPEA) or radiolabeled muscarinic acetylcholine receptor ligands. These tracers significantly expand the diagnostic toolbox for the visualization of pathological processes in cancer and neurological disorders.

References

- [1] Neither azeotropic drying, nor base nor other additives: a minimalist approach to ¹⁸F-labeling
- R. Richarz, P. Krapf, F. Zarrad, E. A. Urusova, B. Neumaier and B. D. Zlatopolskiy, *Org Biomol Chem* **2014**, *12*, 8094-9
- $\begin{tabular}{ll} [2] \label{table:condition} \textbf{Copper-Mediated Aromatic Radiofluorination Revisited: Efficient Production of PET Tracers on a Preparative Scale \\ \end{tabular}$
- B. D. Zlatopolskiy, J. Zischler, P. Krapf, F. Zarrad, E. A. Urusova, E. Kordys, H. Endepols and B. Neumaier, *Chemistry* **2015**, *21*, 5972-9
- [3] A Practical Method for the Preparation of ¹⁸F-Labeled Aromatic Amino Acids from Nucleophilic [¹⁸F]Fluoride and Stannyl Precursors for Electrophilic Radiohalogenation
- F. Zarrad, B. Zlatopolskiy, P. Krapf, J. Zischler and B. Neumaier, Molecules 2017, 22, 2231
- [4] Alcohol-Enhanced Cu-Mediated Radiofluorination
- J. Zischler, N. Kolks, D. Modemann, B. Neumaier and B. D. Zlatopolskiy, *Chemistry A European Journal* **2017**, *23*, 3251-3256