000872693 001__ 872693
000872693 005__ 20240712113233.0
000872693 0247_ $$2doi$$a10.1088/2515-7655/ab6b39
000872693 0247_ $$2Handle$$a2128/25333
000872693 0247_ $$2WOS$$aWOS:000569619500001
000872693 037__ $$aFZJ-2020-00183
000872693 082__ $$a530
000872693 1001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b0$$eCorresponding author
000872693 245__ $$aLocalized electrochemical redox reactions in yttria stabilized zirconia single crystals
000872693 260__ $$aBristol$$bIOP Publishing$$c2020
000872693 3367_ $$2DRIVER$$aarticle
000872693 3367_ $$2DataCite$$aOutput Types/Journal article
000872693 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1595426117_1220
000872693 3367_ $$2BibTeX$$aARTICLE
000872693 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872693 3367_ $$00$$2EndNote$$aJournal Article
000872693 520__ $$aHerein, electroreduction in yttria-stabilized zirconia are investigated by means of Hebb-Wagner polarization experiments. By performing optical and thermal microscopy on single crystals and thin films during the application of an electric field under vacuum or oxygen-tight sealed conditions, the movement of the reduction front from the cathode to the anode, which causes a blackening of the material, is monitored. When performing electrocoloration experiments on thin film samples, the progressing reaction of the blackened region was found to be inhomogeneous and evolves as a dendrite-like finger structure. The progression of the blackening fingers follow preferentially the electric field lines and thus are influenced by distortions in the field that can be caused by metallic particles embedded in the oxide. In contrast to this, in the first stage of the reduction process no significant influence of mechanically-induced dislocations on the morphology or kinetics on the electroreduction can be found. Only after a heavy electroreduction was a localized transformation of the surface region observed. There is an evolution of highly oxygen deficient ZrOx regions, which have a characteristic checked topography pattern at the microscale level.
000872693 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000872693 588__ $$aDataset connected to CrossRef
000872693 7001_ $$0P:(DE-HGF)0$$aSzot, Kristof$$b1
000872693 7001_ $$0P:(DE-HGF)0$$aWrana, Dominik$$b2
000872693 7001_ $$0P:(DE-HGF)0$$aJany, Benedykt R.$$b3
000872693 7001_ $$0P:(DE-HGF)0$$aKrok, Franciszek$$b4
000872693 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b5
000872693 773__ $$0PERI:(DE-600)2950951-8$$a10.1088/2515-7655/ab6b39$$p034008$$tJPhys energy$$v2$$x2515-7655$$y2020
000872693 8564_ $$uhttps://juser.fz-juelich.de/record/872693/files/Rodenb%C3%BCcher_2020_J._Phys._Energy_2_034008.pdf$$yOpenAccess
000872693 8564_ $$uhttps://juser.fz-juelich.de/record/872693/files/Rodenb%C3%BCcher_2020_J._Phys._Energy_2_034008.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872693 909CO $$ooai:juser.fz-juelich.de:872693$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b0$$kFZJ
000872693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b5$$kFZJ
000872693 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b5$$kRWTH
000872693 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000872693 9141_ $$y2020
000872693 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872693 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872693 920__ $$lyes
000872693 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000872693 9801_ $$aFullTexts
000872693 980__ $$ajournal
000872693 980__ $$aVDB
000872693 980__ $$aUNRESTRICTED
000872693 980__ $$aI:(DE-Juel1)IEK-14-20191129
000872693 981__ $$aI:(DE-Juel1)IET-4-20191129