001     872693
005     20240712113233.0
024 7 _ |a 10.1088/2515-7655/ab6b39
|2 doi
024 7 _ |a 2128/25333
|2 Handle
024 7 _ |a WOS:000569619500001
|2 WOS
037 _ _ |a FZJ-2020-00183
082 _ _ |a 530
100 1 _ |a Rodenbücher, Christian
|0 P:(DE-Juel1)142194
|b 0
|e Corresponding author
245 _ _ |a Localized electrochemical redox reactions in yttria stabilized zirconia single crystals
260 _ _ |a Bristol
|c 2020
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1595426117_1220
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Herein, electroreduction in yttria-stabilized zirconia are investigated by means of Hebb-Wagner polarization experiments. By performing optical and thermal microscopy on single crystals and thin films during the application of an electric field under vacuum or oxygen-tight sealed conditions, the movement of the reduction front from the cathode to the anode, which causes a blackening of the material, is monitored. When performing electrocoloration experiments on thin film samples, the progressing reaction of the blackened region was found to be inhomogeneous and evolves as a dendrite-like finger structure. The progression of the blackening fingers follow preferentially the electric field lines and thus are influenced by distortions in the field that can be caused by metallic particles embedded in the oxide. In contrast to this, in the first stage of the reduction process no significant influence of mechanically-induced dislocations on the morphology or kinetics on the electroreduction can be found. Only after a heavy electroreduction was a localized transformation of the surface region observed. There is an evolution of highly oxygen deficient ZrOx regions, which have a characteristic checked topography pattern at the microscale level.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Szot, Kristof
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wrana, Dominik
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jany, Benedykt R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Krok, Franciszek
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Korte, Carsten
|0 P:(DE-Juel1)140525
|b 5
773 _ _ |a 10.1088/2515-7655/ab6b39
|0 PERI:(DE-600)2950951-8
|p 034008
|t JPhys energy
|v 2
|y 2020
|x 2515-7655
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/872693/files/Rodenb%C3%BCcher_2020_J._Phys._Energy_2_034008.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/872693/files/Rodenb%C3%BCcher_2020_J._Phys._Energy_2_034008.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872693
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142194
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)140525
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)140525
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21