000872695 001__ 872695
000872695 005__ 20250701125913.0
000872695 0247_ $$2doi$$a10.1016/j.ijhydene.2020.07.031
000872695 0247_ $$2ISSN$$a0360-3199
000872695 0247_ $$2ISSN$$a1879-3487
000872695 0247_ $$2Handle$$a2128/26621
000872695 0247_ $$2WOS$$aWOS:000578042500084
000872695 037__ $$aFZJ-2020-00185
000872695 082__ $$a620
000872695 1001_ $$0P:(DE-Juel1)176715$$aRangel-Hernández, Victor$$b0$$eCorresponding author
000872695 245__ $$aAn experimental investigation of fracture processes in glass-ceramic sealant by means of acoustic emission
000872695 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000872695 3367_ $$2DRIVER$$aarticle
000872695 3367_ $$2DataCite$$aOutput Types/Journal article
000872695 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609251838_10540
000872695 3367_ $$2BibTeX$$aARTICLE
000872695 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872695 3367_ $$00$$2EndNote$$aJournal Article
000872695 520__ $$aOne of the essential components for ensuring the long service life of solid oxide cell (SOC) stacks is the sealant used. Therefore, in this work, an experimental investigation of the glass ceramic sealant (GCS) fracture process was carried out using an Acoustic Emission (AE) based approach. A series of tensile tests at room temperature were performed and the acoustic activity emitted was recorded by two AE sensors. An AE signal analysis was then performed using two approaches: wave mode identification and frequency content analysis. To understand the fracture process of the GCS, the analysis was supported with prior knowledge of the GCS microstructure and a post-test visual analysis. This demonstrated the presence of low-frequency failure mechanisms (50–400 kHz) such as debonding, fiber pull-out and matrix cracking, and high-frequency mechanisms (>400 kHz) such as fiber breakage. The results confirm the suitability of using the acoustic emission approach for monitoring failure events and show its potential application in SOC stacks monitoring.
000872695 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000872695 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000872695 588__ $$aDataset connected to CrossRef
000872695 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b1
000872695 7001_ $$0P:(DE-Juel1)161157$$aBabelot, Carole$$b2
000872695 7001_ $$0P:(DE-Juel1)174358$$aLohoff, Robert$$b3
000872695 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b4
000872695 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2020.07.031$$gVol. 45, no. 51, p. 27539 - 27550$$n51$$p27539 - 27550$$tInternational journal of hydrogen energy$$v45$$x0360-3199$$y2020
000872695 8564_ $$uhttps://juser.fz-juelich.de/record/872695/files/AE_ANALYSIS_MANUSCRIPT_FINAL2.pdf$$yPublished on 2020-07-24. Available in OpenAccess from 2021-07-24.
000872695 909CO $$ooai:juser.fz-juelich.de:872695$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176715$$aForschungszentrum Jülich$$b0$$kFZJ
000872695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b1$$kFZJ
000872695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161157$$aForschungszentrum Jülich$$b2$$kFZJ
000872695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174358$$aForschungszentrum Jülich$$b3$$kFZJ
000872695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b4$$kFZJ
000872695 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000872695 9141_ $$y2020
000872695 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000872695 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000872695 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-32
000872695 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000872695 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000872695 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000872695 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2018$$d2020-08-32
000872695 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000872695 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000872695 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000872695 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000872695 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000872695 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000872695 920__ $$lyes
000872695 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000872695 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x1
000872695 9801_ $$aFullTexts
000872695 980__ $$ajournal
000872695 980__ $$aVDB
000872695 980__ $$aUNRESTRICTED
000872695 980__ $$aI:(DE-Juel1)IEK-14-20191129
000872695 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000872695 981__ $$aI:(DE-Juel1)ITE-20250108
000872695 981__ $$aI:(DE-Juel1)IET-4-20191129