Thermochromatographische Isolierung von ⁴⁵Ti aus einem mit 16 MeV Protonen bestrahlten Sc-Target

K. Giesen, Jülich/D, I. Spahn, Jülich/D, B. Scholten, Jülich/D, B. Neumaier, Jülich/D

Kai Giesen, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, Jülich/D

Das Radionuklid 45 Ti ($T_{1/2} = 3,08$ h) ist ein wichtiges Nicht-Standard-Radionuklid, das aufgrund seiner relativ niedrigen maximalen Positronenenergie ($E_{max} = 1040$ keV, $E_{mittel} = 439$ keV) und hohen β^+ Intensität günstige Zerfallseigenschaften für den Einsatz in der PET Bildgebung aufweist. Darüber hinaus ist 45 Ti aufgrund des hohen therapeutischen anti-Tumorpotenzials von Titan(IV)-Komplexen von großem Interesse. Radiomarkierte Titan-Komplexe ermöglichen es, die Bioverteilung und therapeutische Effektivität dieser Titan-Verbindungen zu bestimmen.

Der Einsatz von ⁴⁵Ti ist jedoch durch einen Mangel an entsprechenden radiochemischen Trennverfahren, die es erlauben ⁴⁵Ti in einer chemischen Form zu erhalten, die für die Synthese von Radiometall-Komplexen geeignet ist, begrenzt. Ziel dieser Arbeit war es daher, ⁴⁵Ti aus einem bestrahlten Scandium-Target in einer chemischen Form zu isolieren, die eine weitere Umsetzung ermöglichte. Hierzu wurde das Sc-Target in einem trockenem Chlorgasstrom erhitzt, wodurch sich Titan(IV)chlorid bildete, das dann nachfolgend für die Synthese tetravalenter Ti-Komplexe eingesetzt wurde.

Für die Produktion von ⁴⁵Ti wurde eine dünne Scandium-Scheibe mit 16 MeV Protonen bestrahlt. Das bestrahlte Scandium wurde in einem Chlor-Argon-Gasstrom auf 900 °C erhitzt, wodurch sich ScCl₃ und ⁴⁵TiCl₄ bildeten. Die beiden Verbindungen konnten aufgrund ihrer unterschiedlichen Sublimationstemperaturen voneinander getrennt werden. Das flüchtigere ⁴⁵TiCl₄ wurde bei -29 °C in einem trockenen Glasgefäß oder Acetonitril aufgefangen. Erste Experimente zeigten eine ⁴⁵Ti Trennausbeute von ca. 25%, wobei das aufgefangene ⁴⁵TiCl₄ direkt für nachfolgende Reaktionen eingesetzt wurde.

Im Rahmen einer Modellsynthese wurde das aufgefangene ⁴⁵Ti mit dem Komplex-Ligand FL⁴ umgesetzt und der hydrolysestabile ⁴⁵Ti(IV)salan-Komplex [⁴⁵Ti]TiFL⁴ erhalten. Die Reaktion wurde innerhalb von 30 min. im Auffanggefäß in trockenem Acetonitril bei -29 °C durchgeführt. N,N-Diisopropylethylamin (DIPEA) wurde zur Aktivierung des Salan-Liganden und Neutralisierung der bei der Reaktion gebildeten HCI eingesetzt. Der radiomarkierte Komplex wurde mit einer radiochemischen Ausbeute (HPLC) von 40% erhalten und seine Identität und Reinheit durch HPLC-Analytik mit Hilfe eines Referenzstandards bestätigt.

Es konnte somit gezeigt werden, dass die thermochromatographische Aufarbeitung des Scandium Targets die Isolierung des ⁴⁵Ti als ⁴⁵TiCl₄ erlaubt, so dass diese Methode die Herstellung klinisch relevanter Ti-Komplexe ermöglichen sollte.