000872729 001__ 872729
000872729 005__ 20230117111000.0
000872729 0247_ $$2doi$$a10.1029/2019MS001772
000872729 0247_ $$2Handle$$a2128/24071
000872729 0247_ $$2altmetric$$aaltmetric:69953702
000872729 0247_ $$2WOS$$aWOS:000502179000001
000872729 037__ $$aFZJ-2020-00207
000872729 082__ $$a550
000872729 1001_ $$0P:(DE-Juel1)169959$$aHan, Cunbo$$b0$$eCorresponding author
000872729 245__ $$aResponse of Convective Boundary Layer and Shallow Cumulus to Soil Moisture Heterogeneity: A Large‐Eddy Simulation Study
000872729 260__ $$aFort Collins, Colo.$$c2019
000872729 3367_ $$2DRIVER$$aarticle
000872729 3367_ $$2DataCite$$aOutput Types/Journal article
000872729 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583144181_31664
000872729 3367_ $$2BibTeX$$aARTICLE
000872729 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872729 3367_ $$00$$2EndNote$$aJournal Article
000872729 520__ $$aIn this study, the impact of varying soil moisture heterogeneity (spatial variance and structure) on the development of the convective boundary layer and shallow cumulus clouds was investigated. Applying soil moisture heterogeneity generated via spatially correlated Gaussian random fields based on a power law model and idealized atmospheric vertical profiles as initial conditions, three sets of large‐eddy simulations provide insight in the influence of soil moisture heterogeneity on the ensuing growth of the convective boundary layer and development of shallow cumulus clouds. A sensitivity on the strong, weak, and unstructured soil moisture heterogeneity is investigated. The simulation results show that domain‐averaged land surface sensible heat and latent heat flux change strongly with changing soil moisture variance because of the interactions between surface heterogeneity and induced circulations, while domain means of soil moisture are identical. Vertical profiles of boundary layer characteristics are strongly influenced by the surface energy partitioning and induced circulations, especially the profiles of liquid water and liquid water flux. The amount of liquid water and liquid water flux increases with increasing structure. In addition, the liquid water path is higher in case of strongly‐structured heterogeneity because more available energy is partitioned into latent heat and more intensive updrafts exist. Interestingly, the increase of liquid water path with increasing soil moisture variance only occurs in the strongly structured cases, which suggests that soil moisture variance and structure work conjunctively in the surface energy partitioning and the cloud formation.
000872729 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000872729 588__ $$aDataset connected to CrossRef
000872729 7001_ $$0P:(DE-Juel1)172089$$aBrdar, Slavko$$b1$$ufzj
000872729 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b2
000872729 773__ $$0PERI:(DE-600)2462132-8$$a10.1029/2019MS001772$$gp. 2019MS001772$$n12$$p4305-4322$$tJournal of advances in modeling earth systems$$v11$$x1942-2466$$y2019
000872729 8564_ $$uhttps://juser.fz-juelich.de/record/872729/files/Rechnung_R-2019-00444.pdf
000872729 8564_ $$uhttps://juser.fz-juelich.de/record/872729/files/Han_et_al-2019-Journal_of_Advances_in_Modeling_Earth_Systems.pdf$$yOpenAccess
000872729 8564_ $$uhttps://juser.fz-juelich.de/record/872729/files/Han_et_al-2019-Journal_of_Advances_in_Modeling_Earth_Systems.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872729 8564_ $$uhttps://juser.fz-juelich.de/record/872729/files/Rechnung_R-2019-00444.pdf?subformat=pdfa$$xpdfa
000872729 8767_ $$8R-2019-00444$$92020-02-27$$d2020-03-04$$eAPC$$jDeposit$$lDEAL: Wiley$$pJAME21005$$zRechnung von MPDL erhalten
000872729 909CO $$ooai:juser.fz-juelich.de:872729$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000872729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169959$$aForschungszentrum Jülich$$b0$$kFZJ
000872729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172089$$aForschungszentrum Jülich$$b1$$kFZJ
000872729 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b2$$kFZJ
000872729 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000872729 9141_ $$y2019
000872729 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872729 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872729 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872729 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ADV MODEL EARTH SY : 2017
000872729 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000872729 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000872729 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872729 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872729 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872729 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872729 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872729 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872729 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872729 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872729 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000872729 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000872729 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000872729 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000872729 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000872729 980__ $$ajournal
000872729 980__ $$aVDB
000872729 980__ $$aI:(DE-Juel1)IBG-3-20101118
000872729 980__ $$aAPC
000872729 980__ $$aUNRESTRICTED
000872729 9801_ $$aAPC
000872729 9801_ $$aFullTexts