001     872729
005     20230117111000.0
024 7 _ |a 10.1029/2019MS001772
|2 doi
024 7 _ |a 2128/24071
|2 Handle
024 7 _ |a altmetric:69953702
|2 altmetric
024 7 _ |a WOS:000502179000001
|2 WOS
037 _ _ |a FZJ-2020-00207
082 _ _ |a 550
100 1 _ |a Han, Cunbo
|0 P:(DE-Juel1)169959
|b 0
|e Corresponding author
245 _ _ |a Response of Convective Boundary Layer and Shallow Cumulus to Soil Moisture Heterogeneity: A Large‐Eddy Simulation Study
260 _ _ |a Fort Collins, Colo.
|c 2019
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583144181_31664
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, the impact of varying soil moisture heterogeneity (spatial variance and structure) on the development of the convective boundary layer and shallow cumulus clouds was investigated. Applying soil moisture heterogeneity generated via spatially correlated Gaussian random fields based on a power law model and idealized atmospheric vertical profiles as initial conditions, three sets of large‐eddy simulations provide insight in the influence of soil moisture heterogeneity on the ensuing growth of the convective boundary layer and development of shallow cumulus clouds. A sensitivity on the strong, weak, and unstructured soil moisture heterogeneity is investigated. The simulation results show that domain‐averaged land surface sensible heat and latent heat flux change strongly with changing soil moisture variance because of the interactions between surface heterogeneity and induced circulations, while domain means of soil moisture are identical. Vertical profiles of boundary layer characteristics are strongly influenced by the surface energy partitioning and induced circulations, especially the profiles of liquid water and liquid water flux. The amount of liquid water and liquid water flux increases with increasing structure. In addition, the liquid water path is higher in case of strongly‐structured heterogeneity because more available energy is partitioned into latent heat and more intensive updrafts exist. Interestingly, the increase of liquid water path with increasing soil moisture variance only occurs in the strongly structured cases, which suggests that soil moisture variance and structure work conjunctively in the surface energy partitioning and the cloud formation.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brdar, Slavko
|0 P:(DE-Juel1)172089
|b 1
|u fzj
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 2
773 _ _ |a 10.1029/2019MS001772
|g p. 2019MS001772
|0 PERI:(DE-600)2462132-8
|n 12
|p 4305-4322
|t Journal of advances in modeling earth systems
|v 11
|y 2019
|x 1942-2466
856 4 _ |u https://juser.fz-juelich.de/record/872729/files/Rechnung_R-2019-00444.pdf
856 4 _ |u https://juser.fz-juelich.de/record/872729/files/Han_et_al-2019-Journal_of_Advances_in_Modeling_Earth_Systems.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/872729/files/Han_et_al-2019-Journal_of_Advances_in_Modeling_Earth_Systems.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/872729/files/Rechnung_R-2019-00444.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:872729
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169959
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172089
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ADV MODEL EARTH SY : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21