001     872730
005     20240712113233.0
024 7 _ |a 10.1002/cite.201900174
|2 doi
024 7 _ |a 0009-286X
|2 ISSN
024 7 _ |a 1522-2640
|2 ISSN
024 7 _ |a 2128/24023
|2 Handle
024 7 _ |a WOS:000506937800001
|2 WOS
037 _ _ |a FZJ-2020-00208
082 _ _ |a 660
100 1 _ |a Theuer, Trutz
|0 P:(DE-Juel1)172903
|b 0
|e Corresponding author
245 _ _ |a Sustainable Syngas Production by High‐Temperature Co‐electrolysis
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579867637_5040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High‐temperature co‐electrolysis shows comparable performance to steam electrolysis. Current densities above 1 A cm−2 can be reached between 700 °C and 800 °C. Tailor‐made syngas is produced, mainly determined by the reactant ratio. The experimental results are supported by modeling. Durability tests with cathode‐supported cells show increased voltage degradation rates during electrolysis compared to fuel cell operation. Nickel depletion is found to be the main cause.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schäfer, Dominik
|0 P:(DE-Juel1)171824
|b 1
700 1 _ |a Dittrich, Lucy
|0 P:(DE-Juel1)171748
|b 2
700 1 _ |a Nohl, Markus
|0 P:(DE-Juel1)177600
|b 3
700 1 _ |a Foit, Severin
|0 P:(DE-Juel1)166524
|b 4
700 1 _ |a Blum, Ludger
|0 P:(DE-Juel1)129828
|b 5
700 1 _ |a de Haart, L. G. J.
|0 P:(DE-Juel1)129952
|b 6
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 7
773 _ _ |a 10.1002/cite.201900174
|g p. cite.201900174
|0 PERI:(DE-600)2035041-7
|n 1-2
|p 40-44
|t Chemie - Ingenieur - Technik
|v 92
|y 2020
|x 1522-2640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/872730/files/Theuer_et_al-2020-Chemie_Ingenieur_Technik.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/872730/files/Theuer_et_al-2020-Chemie_Ingenieur_Technik.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872730
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172903
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)172903
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171748
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)171748
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177600
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)177600
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166524
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-ING-TECH : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21