000872733 001__ 872733
000872733 005__ 20240610120957.0
000872733 0247_ $$2doi$$a10.1103/PhysRevE.101.042124
000872733 0247_ $$2ISSN$$a1063-651X
000872733 0247_ $$2ISSN$$a1095-3787
000872733 0247_ $$2ISSN$$a1538-4519
000872733 0247_ $$2ISSN$$a1539-3755
000872733 0247_ $$2ISSN$$a1550-2376
000872733 0247_ $$2ISSN$$a2470-0045
000872733 0247_ $$2ISSN$$a2470-0053
000872733 0247_ $$2Handle$$a2128/26002
000872733 0247_ $$2altmetric$$aaltmetric:81465128
000872733 0247_ $$2pmid$$apmid:32422832
000872733 0247_ $$2WOS$$aWOS:000527130200002
000872733 037__ $$aFZJ-2020-00211
000872733 082__ $$a530
000872733 1001_ $$0P:(DE-Juel1)171475$$aStapmanns, Jonas$$b0$$ufzj
000872733 245__ $$aSelf-consistent formulations for stochastic nonlinear neuronal dynamics
000872733 260__ $$aWoodbury, NY$$bInst.$$c2020
000872733 3367_ $$2DRIVER$$aarticle
000872733 3367_ $$2DataCite$$aOutput Types/Journal article
000872733 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603985383_13101
000872733 3367_ $$2BibTeX$$aARTICLE
000872733 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872733 3367_ $$00$$2EndNote$$aJournal Article
000872733 520__ $$aNeural dynamics is often investigated with tools from bifurcation theory. However, many neuron models are stochastic, mimicking fluctuations in the input from unknown parts of the brain or the spiking nature of signals. Noise changes the dynamics with respect to the deterministic model; in particular classical bifurcation theory cannot be applied. We formulate the stochastic neuron dynamics in the Martin-Siggia-Rose de Dominicis-Janssen (MSRDJ) formalism and present the fluctuation expansion of the effective action and the functional renormalization group (fRG) as two systematic ways to incorporate corrections to the mean dynamics and time-dependent statistics due to fluctuations in the presence of nonlinear neuronal gain. To formulate self-consistency equations, we derive a fundamental link between the effective action in the Onsager-Machlup (OM) formalism, which allows the study of phase transitions, and the MSRDJ effective action, which is computationally advantageous. These results in particular allow the derivation of an OM effective action for systems with non-Gaussian noise. This approach naturally leads to effective deterministic equations for the first moment of the stochastic system; they explain how nonlinearities and noise cooperate to produce memory effects. Moreover, the MSRDJ formulation yields an effective linear system that has identical power spectra and linear response. Starting from the better known loopwise approximation, we then discuss the use of the fRG as a method to obtain self-consistency beyond the mean. We present a new efficient truncation scheme for the hierarchy of flow equations for the vertex functions by adapting the Blaizot, Méndez, and Wschebor approximation from the derivative expansion to the vertex expansion. The methods are presented by means of the simplest possible example of a stochastic differential equation that has generic features of neuronal dynamics.
000872733 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000872733 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x1
000872733 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x2
000872733 536__ $$0G:(DE-Juel-1)BMBF-01IS19077A$$aRenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)$$cBMBF-01IS19077A$$x3
000872733 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000872733 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x5
000872733 588__ $$aDataset connected to CrossRef
000872733 7001_ $$0P:(DE-Juel1)164473$$aKühn, Tobias$$b1$$eCorresponding author
000872733 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b2$$ufzj
000872733 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b3$$ufzj
000872733 7001_ $$0P:(DE-HGF)0$$aHonerkamp, Carsten$$b4
000872733 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b5$$ufzj
000872733 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.101.042124$$gVol. 101, no. 4, p. 042124$$n4$$p042124$$tPhysical review / E covering statistical, nonlinear, biological, and soft matter physics$$v101$$x1063-651X$$y2020
000872733 8564_ $$uhttps://juser.fz-juelich.de/record/872733/files/Invoice_INV_20_JAN_003109.pdf
000872733 8564_ $$uhttps://juser.fz-juelich.de/record/872733/files/Invoice_INV_20_JAN_003109.pdf?subformat=pdfa$$xpdfa
000872733 8564_ $$uhttps://juser.fz-juelich.de/record/872733/files/PhysRevE.101.042124.pdf$$yOpenAccess
000872733 8564_ $$uhttps://juser.fz-juelich.de/record/872733/files/PhysRevE.101.042124.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872733 8767_ $$8INV/20/JAN/003109$$92020-01-15$$d2020-02-06$$eColour charges$$jZahlung erfolgt$$pEA11719
000872733 909CO $$ooai:juser.fz-juelich.de:872733$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000872733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171475$$aForschungszentrum Jülich$$b0$$kFZJ
000872733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164473$$aForschungszentrum Jülich$$b1$$kFZJ
000872733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b2$$kFZJ
000872733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b3$$kFZJ
000872733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b5$$kFZJ
000872733 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000872733 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000872733 9141_ $$y2020
000872733 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872733 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872733 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000872733 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872733 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872733 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872733 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872733 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872733 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872733 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872733 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2017
000872733 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872733 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872733 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000872733 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000872733 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000872733 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x3
000872733 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x4
000872733 9801_ $$aAPC
000872733 9801_ $$aFullTexts
000872733 980__ $$ajournal
000872733 980__ $$aVDB
000872733 980__ $$aUNRESTRICTED
000872733 980__ $$aI:(DE-Juel1)INM-6-20090406
000872733 980__ $$aI:(DE-Juel1)IAS-6-20130828
000872733 980__ $$aI:(DE-Juel1)INM-10-20170113
000872733 980__ $$aI:(DE-Juel1)IAS-4-20090406
000872733 980__ $$aI:(DE-Juel1)IKP-3-20111104
000872733 980__ $$aAPC
000872733 981__ $$aI:(DE-Juel1)IAS-4-20090406
000872733 981__ $$aI:(DE-Juel1)IAS-6-20130828