Hauptseite > Workflowsammlungen > Publikationsgebühren > Self-consistent formulations for stochastic nonlinear neuronal dynamics > print |
001 | 872733 | ||
005 | 20240610120957.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevE.101.042124 |2 doi |
024 | 7 | _ | |a 1063-651X |2 ISSN |
024 | 7 | _ | |a 1095-3787 |2 ISSN |
024 | 7 | _ | |a 1538-4519 |2 ISSN |
024 | 7 | _ | |a 1539-3755 |2 ISSN |
024 | 7 | _ | |a 1550-2376 |2 ISSN |
024 | 7 | _ | |a 2470-0045 |2 ISSN |
024 | 7 | _ | |a 2470-0053 |2 ISSN |
024 | 7 | _ | |a 2128/26002 |2 Handle |
024 | 7 | _ | |a altmetric:81465128 |2 altmetric |
024 | 7 | _ | |a pmid:32422832 |2 pmid |
024 | 7 | _ | |a WOS:000527130200002 |2 WOS |
037 | _ | _ | |a FZJ-2020-00211 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Stapmanns, Jonas |0 P:(DE-Juel1)171475 |b 0 |u fzj |
245 | _ | _ | |a Self-consistent formulations for stochastic nonlinear neuronal dynamics |
260 | _ | _ | |a Woodbury, NY |c 2020 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1603985383_13101 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Neural dynamics is often investigated with tools from bifurcation theory. However, many neuron models are stochastic, mimicking fluctuations in the input from unknown parts of the brain or the spiking nature of signals. Noise changes the dynamics with respect to the deterministic model; in particular classical bifurcation theory cannot be applied. We formulate the stochastic neuron dynamics in the Martin-Siggia-Rose de Dominicis-Janssen (MSRDJ) formalism and present the fluctuation expansion of the effective action and the functional renormalization group (fRG) as two systematic ways to incorporate corrections to the mean dynamics and time-dependent statistics due to fluctuations in the presence of nonlinear neuronal gain. To formulate self-consistency equations, we derive a fundamental link between the effective action in the Onsager-Machlup (OM) formalism, which allows the study of phase transitions, and the MSRDJ effective action, which is computationally advantageous. These results in particular allow the derivation of an OM effective action for systems with non-Gaussian noise. This approach naturally leads to effective deterministic equations for the first moment of the stochastic system; they explain how nonlinearities and noise cooperate to produce memory effects. Moreover, the MSRDJ formulation yields an effective linear system that has identical power spectra and linear response. Starting from the better known loopwise approximation, we then discuss the use of the fRG as a method to obtain self-consistency beyond the mean. We present a new efficient truncation scheme for the hierarchy of flow equations for the vertex functions by adapting the Blaizot, Méndez, and Wschebor approximation from the derivative expansion to the vertex expansion. The methods are presented by means of the simplest possible example of a stochastic differential equation that has generic features of neuronal dynamics. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
536 | _ | _ | |a 571 - Connectivity and Activity (POF3-571) |0 G:(DE-HGF)POF3-571 |c POF3-571 |f POF III |x 1 |
536 | _ | _ | |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018) |0 G:(DE-Juel1)HGF-SMHB-2014-2018 |c HGF-SMHB-2014-2018 |f MSNN |x 2 |
536 | _ | _ | |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) |0 G:(DE-Juel-1)BMBF-01IS19077A |c BMBF-01IS19077A |x 3 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 4 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |x 5 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Kühn, Tobias |0 P:(DE-Juel1)164473 |b 1 |e Corresponding author |
700 | 1 | _ | |a Dahmen, David |0 P:(DE-Juel1)156459 |b 2 |u fzj |
700 | 1 | _ | |a Luu, Tom |0 P:(DE-Juel1)159481 |b 3 |u fzj |
700 | 1 | _ | |a Honerkamp, Carsten |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 5 |u fzj |
773 | _ | _ | |a 10.1103/PhysRevE.101.042124 |g Vol. 101, no. 4, p. 042124 |0 PERI:(DE-600)2844562-4 |n 4 |p 042124 |t Physical review / E covering statistical, nonlinear, biological, and soft matter physics |v 101 |y 2020 |x 1063-651X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/872733/files/Invoice_INV_20_JAN_003109.pdf |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/872733/files/Invoice_INV_20_JAN_003109.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/872733/files/PhysRevE.101.042124.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/872733/files/PhysRevE.101.042124.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:872733 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171475 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)164473 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)156459 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)159481 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144806 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |2 G:(DE-HGF)POF3-500 |v Connectivity and Activity |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV E : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-4-20090406 |k IAS-4 |l Theorie der Starken Wechselwirkung |x 3 |
920 | 1 | _ | |0 I:(DE-Juel1)IKP-3-20111104 |k IKP-3 |l Theorie der starken Wechselwirkung |x 4 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IKP-3-20111104 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|