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Neural dynamics is often investigated with tools from bifurcation theory. However, many neuron models

are stochastic, mimicking fluctuations in the input from unknown parts of the brain or the spiking nature of

signals. Noise changes the dynamics with respect to the deterministic model; in particular classical bifurcation

theory cannot be applied. We formulate the stochastic neuron dynamics in the Martin-Siggia-Rose de Dominicis-

Janssen (MSRDJ) formalism and present the fluctuation expansion of the effective action and the functional

renormalization group (fRG) as two systematic ways to incorporate corrections to the mean dynamics and

time-dependent statistics due to fluctuations in the presence of nonlinear neuronal gain. To formulate self-

consistency equations, we derive a fundamental link between the effective action in the Onsager-Machlup

(OM) formalism, which allows the study of phase transitions, and the MSRDJ effective action, which is

computationally advantageous. These results in particular allow the derivation of an OM effective action for

systems with non-Gaussian noise. This approach naturally leads to effective deterministic equations for the first

moment of the stochastic system; they explain how nonlinearities and noise cooperate to produce memory effects.

Moreover, the MSRDJ formulation yields an effective linear system that has identical power spectra and linear

response. Starting from the better known loopwise approximation, we then discuss the use of the fRG as a method

to obtain self-consistency beyond the mean. We present a new efficient truncation scheme for the hierarchy of

flow equations for the vertex functions by adapting the Blaizot, Méndez, and Wschebor approximation from

the derivative expansion to the vertex expansion. The methods are presented by means of the simplest possible

example of a stochastic differential equation that has generic features of neuronal dynamics.

DOI: 10.1103/PhysRevE.101.042124

I. INTRODUCTION

Neuronal networks are interesting physical systems in vari-

ous respects: they operate outside thermodynamic equilibrium

[1], a consequence of directed synaptic connections that pro-

hibit detailed balance [2]; they show relaxational dynamics

and hence do not conserve but rather constantly dissipate

energy; and they show collective behavior that self-organizes

as a result of exposure to structured, correlated inputs and

the interaction among their constituents. But their analysis is

complicated by three fundamental properties: Neuronal activ-

ity is stochastic, the input-output transfer function of single

neurons is nonlinear, and networks show massive recurrence

[3] that gives rise to strong interaction effects. They hence

bear similarity with systems that are investigated in the field

of (quantum) many particle systems. Here, as well, (quantum)

fluctuations need to be taken into account and the challenge

is to understand collective phenomena that arise from the

*These authors contributed equally to this work.
†Present address: Laboratoire de Physique Théorique de l’ENS

24, Rue Lhomond 75231, Paris Cedex 05 - France.

nonlinear interaction of their constituents. Not surprisingly,

similar methods can in principle be used to study these two a

priori distinct system classes [4–8].

But so far the techniques employed within theoretical

neuroscience just begin to harvest this potential. Here we

adapt methods from statistical field theory and functional

renormalization group techniques to the study of neuronal

dynamics.

A reader may wonder in which cases functional methods

that we review and extend here are needed to study neuronal

network dynamics. In fact, in many cases, simpler techniques

could be sufficient: as long one is sure that the dominant

behavior of a network is not affected by fluctuations, a mean-

field approximation is enough [9,10]. For example, if one

wants to know the stationary firing rates of neurons in typical

network settings (but see Ref. [11] for an exception). Or if

one seeks to understand first-order phase transitions, where

the mean activity suddenly changes: The transition from a qui-

escent to a highly active state in a bistable neuronal network

is a prime example [10]; the activation of attractors embedded

into the connectivity of a Hopfield network is a second [12].

An inherent danger of the mean-field approximation,

though, is that by construction it is “too self-consistent”; this
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means that there is no way of determining its limit of validity

as long as it is not embedded into a wider framework that

assesses the importance of fluctuations. The loop expansion,

briefly reviewed here, is this wider framework (see also

Ref. [13], Sec. 6.4, for a discussion of this point in the context

of Landau theory).

Even if fluctuations are important, it may be sufficient to

use linear response theory around the mean-field approxima-

tion. This approach has indeed been pursued quite success-

fully [10,14–21], for example, to explain why correlations are

weak in inhibition-dominated networks [20,22].

So why bother about methods that go beyond this widely

established, simple, and successful methodology?

If it was clear that the considerable variability observed in

the brain was meaningless noise, one should not invest any

work in going beyond linear response theory. But there is

surely no neuroscientist who would sign this statement. On

the contrary, experiments have clearly shown that fluctuations

of neuronal activity are indeed linked in a meaningful way

to the animal’s behavior (see, e.g., Refs. [23–25]). Treating

fluctuations in linear response theory means that they follow

linear equations: Fluctuating signals that are simultaneously

injected at various places of the brain then travel through it

without mutual interference. The function the brain performs

at this level of approximation is thus that of a linear filter;

clearly a too limited view to explain most of its functions.

The diagrammatic techniques considered here were devel-

oped over decades within the physics community to capture

the interaction of fluctuations in nonlinear systems and they

are widely used in many fields [26]. In the neuronal context,

they thus enable the investigation of potential functional roles

of the variability observed in neuronal systems.

The finding of signatures of criticality in neuronal activ-

ity is an example of a network state that is dominated by

fluctuations, a scenario where mean-field and linear response

theory clearly break down. Parallel recordings in cell cultures

[27] and in vivo [28] show power law distributions in the

numbers of coactive neurons, suggestive of scale-free dynam-

ics, which typically indicates a continuous phase transition.

Critical states also have consequences for information pro-

cessing: reservoir computing [29,30] with random networks

close to criticality indeed shows the highest computational

performance [31], maximizing the wealth of transformations.

The renormalization group was one of the major achieve-

ments of theoretical physics of the past century to understand

collective phenomena close to continuous phase transitions

[32]. So far, however, these methods have rarely been em-

ployed to neuronal networks. The need for a formalism of

dynamical critical phenomena of neuronal networks has ex-

plicitly been articulated by Mora and Bialek [33]: “Except

in a few cases, the mathematical language that we use to

describe criticality in statistical systems is quite different from

the language that we use in dynamical systems. Efforts to

understand, for example, current data on networks of neurons

will force us to address the relations between statistical and

dynamical criticality more clearly” (p. 288).

The current work presents such a formalism. The func-

tional renormalization group [34–36] allows the study of

critical fluctuations in networks that operate outside ther-

modynamic equilibrium: dynamical critical phenomena [6].

This method has witnessed successes in condensed matter

physics in problems ranging from classical and quantum

critical phenomena over the explorations of the ground states

of interacting many-body systems to the improved determi-

nation of effective model parameters from ab initio theories.

It systematically improves the physical description beyond

mean-field theory by including fluctuations and by removing

ambiguities.

To showcase the importance of continuous phase transi-

tions we here demonstrate that networks with connectivity

close to the point of balance between excitation and inhibition

exhibit critical fluctuations. We reduce the network model

to a spatially homogeneous version of “model A” of the

seminal characterization of dynamical critical phenomena by

Hohenberg and Halperin [5].

Techniques similar to the ones reviewed and extended in

the current article have already been used in computational

neuroscience. One technical motivation comes from the need

to study disordered systems, for example, networks with

randomly drawn connections. The formulation with help of

a generating functional is useful to investigate the impact

of connectivity structure on dynamics. For example, Martí

et al. [37] study the slowdown of fluctuations in networks

with an overrepresentation of symmetric connections, as they

are observed in cortex [38]. Their analysis rests on the

Martin-Siggia-Rose-de Dominicis-Janssen (MSRDJ) formal-

ism [39–41] presented here (see also Refs. [7,8] for concise

reviews). Crisanti and Sompolinsky [42] compute the transi-

tion to chaos and the stability of mean-field solutions in deter-

ministic random networks. Schuecker et al. [43] find a novel

dynamical state, between the breakdown of linear stability

and the onset of chaos that has optimal sequential memory.

Dahmen et al. [44] describe a state of critical dynamics in

neuronal networks that is hidden within the high-dimensional

space of all neurons.

Another motivation comes from the study of correlated

activity between pairs of cells. The loopwise expansion as a

systematic extension of the commonly performed mean-field

approximation has been applied to understand fluctuations in

recurrent networks of neurons with discrete activation states

[45,46], to obtain fluctuation corrections to the mean activity

and higher order correlations, structure-dynamics relation-

ships in stochastic spiking networks [11], and to study spiking

networks of quadratic integrate-and-fire models [47]. The

recent work by Brinkman et al. [48] addresses the pertinent

question whether and how hidden units bias the estimation

of connectivity from correlations. These works use different

variants of the systematic fluctuation expansion discussed

here on minimal examples.

In the context of critical phenomena, the study by Di

Santo et al. [49] is worth mentioning. The authors propose

a field theory of neuronal activity on a two-dimensional sheet,

reminiscent of a Ginzburg-Landau theory (Ref. [5], model

A). So far, this model has been investigated by help of the

mean-field approximation and a first-order transition has been

found. An investigation of critical phenomena of a continuous

phase transition in this model would require renormaliza-

tion group methods that we discuss here. Formally, their

model resembles the Kardar-Parisi-Zhang equation [50], one

of the most prominent models of dynamical criticality which
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requires the functional renormalization group [51,52] or mode

coupling theory [53].

The aim of the current paper is thus to review a sequence of

formulations for the statistics in neuronal-inspired stochastic

dynamics, coherently presented in the order of increasing

self-consistency: mean-field approximation, loop expansion,

and functional renormalization group. To our knowledge, ad-

vanced methods such as the functional renormalization group

have so far not been applied to neuronal systems. We feel

that a work explaining this method in the context of neuronal

dynamics with help of minimal examples and in relation to

the simpler approaches, the mean-field approximation and

the loop expansion, may be helpful for researchers who are

interested in neuronal variability.

The presentation together with more widely used ap-

proaches also allows us to address some of the more subtle

points that we could not find documented in the literature. In

particular, we discuss issues of convexity of the cumulant-

generating functional, the need for the Legendre-Fenchel

transform in systems with dynamic symmetry breaking, the

different definitions of the effective potential in equilibrium

and nonequilibrium systems and its use to investigate phase

transitions. We also point out particularities of the MSRDJ

formalism compared to the field theories more commonly

covered in textbooks.

II. RESULTS

A. Outline of the paper

The outline of the paper is as follows: in Sec. II A we

define the class of stochastic differential equations that have

been used in the literature to describe neuronal dynamics and

we define the simplest nontrivial example that will serve us

throughout the paper to illustrate the essence of the respective

methods. We briefly review the simplest approximation, the

mean-field solution of a stochastic differential equation. The

following sections then develop self-consistent schemes of

increasing complexity.

These more elaborate schemes rely on a representation

of the stochastic system in terms of a cumulant-generating

functional and its Legendre transform, the effective action. We

therefore introduce in Sec. II B the Onsager-Machlup (OM)

field theory, which has a rigorous basis for stochastic differ-

ential equations with Gaussian noise. Section II C explains

the central role of Legendre transforms for the construction of

self-consistency equations.

We proceed to the MSRDJ-field theory in Sec. II D, which

has computational advantages compared to OM. We show

in Sec. II E that the resulting self-consistency equation takes

the form of an effective, deterministic, integro-differential

equation for the mean value of the stochastic process. The

concept of vertex functions is introduced as a set of time

nonlocal coupling kernels that appear in this equation. Our

first main result is the relation of the effective actions in

the OM and the MSRDJ formulation; thus we extend the

definition of the OM effective action for non-Gaussian noise.

These formal prerequisites allow us in Sec. II I to briefly

review the loop expansion as a systematic extension of the

mean-field approximation; it enables practical and systematic

calculations of vertex functions and of probabilistic quantities,

which, by construction, are self-consistent on the level of

the first moments. In Sec. II J we present the effective self-

consistency equation for the mean value of the exemplary

stochastic process in one loop approximation; it shows how

fluctuations influence the relaxation back to baseline after a

small perturbation and provides an intuition for the meaning

of vertex functions. A stochastic linear convolution equation

is presented that has the same second-order statistics as the

full nonlinear system; it explains the meaning of self-energy

corrections for stochastic dynamics.

The most advanced method of self-consistency covered

here is the functional renormalization group, shown in

Sec. II K. It extends the self-consistency up to arbitrary orders

of the vertex functions. In particular, in Sec. II K 1, we present

a new interpretation of the BMW approximation [54] within

the vertex expansion. We show that all terms of the bare

action flowing in this altered BMW-fRG scheme lead to an

improvement over the one-loop result.

Finally, Sec. II L visits the problem of self-consistency

from the perspective of bifurcations. On the example of a

neuronal population dynamics close to the loss of balance,

we show that a bifurcation point in the deterministic model

corresponds to a continuous phase transition in the stochastic

dynamics, illustrating the use of the OM effective action for

nonequilibrium dynamics.

In Sec. III we discuss the presented concepts in comparison

to other approaches and provide an outlook towards applica-

tions within theoretical neuroscience.

B. Stochastic rate equations inspired by neuronal dynamics

The study of rate equations has a long history in theoretical

neuroscience [55,56]. Initially these equations described the

time evolution of the average number of active neurons in a

given time interval: a set of deterministic, coupled differential

equations. To cater for fluctuations of neuronal activity [57],

stochastic models are needed. Markov models, for example,

describe the stochastic evolution of the active number of

neurons [9,45,58]. Such Markov jump processes may be

approximated by stochastic differential equations using a

Kramers-Moyal expansion [59].

But also the dynamics of deterministic spiking network

models [60] has been shown heuristically to be approximated

by effective stochastic differential equations [21,61–64]. Typi-

cally the resulting equations describe population averages, and

thus comprise only a single or a few components. Stochastic

spiking network models, moreover, can be treated within a

variant of the the field theoretical formalism [65,66] used in

the current work [48,67].

Last, stochastic differential equations may be regarded as

a direct generalization of their deterministic counterparts in

their own right. For example, the classical model by Som-

polinsky, Crisanti, and Sommers [68] has been extended to

stochastic dynamics [43].

A typical network dynamics is of the form

dxi(t ) + xi(t ) dt =
∑

j

Ji jφ(x j (t )) dt + dWi(t ), (1)
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with a stochastic increment dW (t ) as a centered Gaussian with

first and second moments given by

〈dWi(t )〉 = 0, 〈dWi(t )dWj (s)〉 = D δi, j δt,s dt .

Here φ is the gain function which is thought to transfer the

internal state variable x (e.g., the membrane potential) into the

output (the firing rate). The term x dt shall describe the leaky

dynamics of neurons.

The aim of this article is to survey methods to construct

self-consistent solutions to such stochastic nonlinear differen-

tial equations. The N components in (1) do not qualitatively

increase the difficulty—rather, the interplay of fluctuations

and the nonlinearity is the cause of complications. To illustrate

the concepts in the simplest but nontrivial setting, in the

remainder of this article we therefore mostly concentrate on

the scalar equation

dx(t ) = f (x(t )) dt + dW (t ). (2)

This is, moreover, identical to (1) for the case of a fully con-

nected network Ji j = N−1J and perfectly correlated stochas-

tic increments dWi across neurons, if one defines f (x) =
−x + J φ(x). For the function φ we assume an expansive

nonlinearity of convex down shape. This is a typical result of

neurons firing in the fluctuation-driven regime with low firing

rates [[69], Eq. (2.6) and Fig. 2]. For specific calculations in

minimal examples, we consider a quadratic form for the gain

function that is thus the simplest approximation of this qualita-

tive shape. Similar approximations have recently been used to

study critical avalanche dynamics in neuronal networks [[49],

Eq. (1)].

Of course, besides the interpretation as the firing rate or

activity of a neuron or of a population of neurons, here x could

as well denote a magnetization, the concentration of some

chemical substance, the number of animals that reproduce and

die, or the value of a stock [70–72].

1. Mean-field approximation

This article investigates a sequence of approximation

techniques to compute the statistics of the system self-

consistently. We present methods in order of increasing com-

plexity and accuracy, starting with the simplest possible self-

consistent approximation: the neglect of fluctuations alto-

gether, which leads to a self-consistency equation for the mean

〈x〉. Throughout the text we use 〈xn〉 to denote the nth moment

of x and 〈〈xn〉〉 to denote the nth cumulant [70].

This simplest self-consistent approximation to the stochas-

tic differential equation (2) consists in neglecting the noise

and instead solving the ordinary differential equation

d

dt
x(t ) = f (x(t )). (3)

Finding the stationary solution to this differential equation

amounts to a fixed point problem, that is, f (x0) = 0. Small

fluctuations around that solution can, to first approximation,

be accounted for by linearizing (2) around x0. By writing

x(t ) = x0 + δx(t ), we obtain

d

dt
δx(t ) = f ′(x0)δx(t ) + ξ (t ) + O(δ2x(t )), (4)

where ξ is a centered Gaussian white noise with variance

D (formally the derivative of dW ). Denoting the Fourier

transform of x as X , we describe the first- and second-order

statistics of these small fluctuations as

0 = 〈δX (ω)〉 =
〈ξ (ω)〉

iω − f ′(x0)
,

〈δX (ω)δX (ω′)〉 =
2πD δ(ω + ω′)

(iω − f ′(x0))(iω′ − f ′(x0))
. (5)

This approach is, however, restricted to small noise ampli-

tudes and cannot be straight-forwardly generalized. From a

conceptual point of view, this approximation is furthermore

not self-consistent, because we solve the deterministic equa-

tion (3) to determine the first moment x0 and then study

fluctuations around it to determine the second-order statistics

as (5). Such fluctuations would, in turn, affect the mean

value, due to the nonlinear parts of f . Continuing the Taylor

expansion of f in (4) to second order, this ad hoc approach

would then yield a correction to the mean given by

〈x〉 ≃ x0 +
1

2
f ′′(x0)

D

−2 f ′(x0)
, (6)

because the variance of the process, by (5), is 〈δx2〉 = D
−2 f ′(x0 )

.

Thus we get an approximation for the mean that is inconsistent

with the value x0 that we assumed to perform the approxi-

mation in the first place. The common thrust of the methods

surveyed in the remainder of this article is to strive for self-

consistency of the statistics and to systematically compute

such fluctuation corrections that are self-consistent also on the

level of higher moments.

C. Generating functionals for stochastic differential equations

1. Onsager-Machlup path integral

To study the system more systematically, we introduce the

path-integral formalism, starting with its Onsager-Machlup

(OM) formulation [73,74]. We assign a probability p[x]Dx to

every path x(t ), where we define the integral measure Dx as

∫
Dx · · · := lim

M→∞

∫
dxt0 · · ·

∫
dxtM−1

. . . ,

where t0, . . . , tM−1 is a uniform discretization of the time

axis into segments of length �t that scales inversely with

M. We here stick to the Itô convention, which means

that we evaluate the integrand at the beginning ti of ev-

ery subinterval [ti, ti+1). For additive noise, as it appears

in (2), all choices for a discretization converge to the

same limit (see Ref. [70], chap. 4.3.6). Furthermore, we

define p[x] = 1
Z

exp (SOM[x]) via

SOM[x] = −
1

2
lim

M→∞

M−1∑

i=0

[(
xi+1 − xi

�t
− f (xi )

)
D−1

×
(

xi+1 − xi

�t
− f (xi )

)]
�t

= −
1

2

∫
dt {∂t x − f (x(t ))}D−1 {∂t x − f (x(t ))} (7)
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[59,73–76],1 and

Z
−1 :=

∫
Dx exp (SOM[x])

is chosen such that the probability p[x] is properly normal-

ized. The probability of the occurrence of deviations from

the solution fulfilling ∂t x = f (x) are suppressed exponen-

tially. Allowing for arbitrary time-dependent solutions x(t ),

for example, by fixing the initial point x(0) = x0 and the

final point x(T ) = xT , p[x] determines the probability for any

path between these points; applied to the dynamics of the

membrane potential of a neuron, it can be used to determine

the probability to exceed the firing threshold. The rate of

escape is, to leading exponential order, given by p[x∗], where

x∗ minimizes SOM. A thorough discussion of this kind of

setting is beyond the scope of this work; good introductions

can be found, e.g., in Ref. [77], Sec. 10.5, or Ref. [78], Sec. 5.

The moments of the ensemble of paths

〈x(t1) · · · x(tn)〉 :=
∫

Dx p[x] x(t1) · · · x(tn) (8)

can be expressed as functional derivatives with respect to j(t )

of the moment-generating functional2

Z[ j] :=
∫

Dx p[x] exp

(∫
dt j(t )x(t )

)
, (9)

evaluated at j(t ) = 0. The cumulant-generating function (or

Helmholtz free energy)

W = ln Z (10)

encodes the statistics in terms of cumulants, the derivatives

of W . This is more efficient than encoding with moments,

because higher order cumulants do not contain information

already contained in lower orders.

D. Stochastic dynamics as a variational problem

With the expressions for the actions SOM one can cal-

culate moments and cumulants of activity as derivatives of

the respective functionals Z and W . For a self-consistent

determination of the mean activity, it is, however, beneficial to

consider the variational problem of some functional ŴOM[x∗]

that assumes stationary points at the true mean value x̌(t ) ≡
〈x(t )〉. To calculate it, we then have to solve the so-called

equation of state δ
δx∗ ŴOM = 0 self-consistently, where δ

δx∗

denotes a functional derivative.

Indeed, such a functional is readily defined via the

Legendre-Fenchel transform

ŴOM[x∗] := sup
j

jTx∗ − W [ j], (11)

1Note that the notation as an integral is meant symbolically: For

concrete calculations of the path integral, one always has to use the

discrete version with a finite sum, perform the integrations, and draw

the limit afterwards.
2Note the sign convention of the action in Eq. (9), which is defined

without a minus sign in front. We will stick to this convention

throughout this paper.

where xTy =
∫∞
−∞ x(t ) y(t ) dt denotes the inner product with

respect to time. The so-defined ŴOM is the effective action (or

Gibbs free energy) [4].3 It is central to the study of phase

transitions, which reduces to finding the stationary points or

regions of ŴOM (see Ref. [79], i.p. chap. 6).4 The variational

formulation naturally solves the problem that derivatives of W

become multivalued at first-order phase transitions; when W

has a cusp and thus the system has multiple states with differ-

ent values for the mean 〈x(t )〉 at the same set of parameters.

We study an example where spontaneous symmetry breaking

causes such a cusp in Sec. II H.

Since W [ j] is convex down in j, the Legendre-Fenchel

transform in (11) is well defined. Note that the Legendre-

Fenchel transform is a generalization of the Legendre trans-

form for cases where W has a nondifferentiable point jc (see

also Appendix A 3 for a proof of convexity of W ). In such

a case the mean of the field 〈x〉 takes different values if j

approaches jc from the left or from the right; such systems

show an abrupt change of the solution as a function of some

control parameter, such as j; an example is multistability in an

attractor network. At the corresponding points 〈x〉, ŴOM has

a flat segment, but is continuously differentiable everywhere5

and is thus analytically simpler than the nonanalytical W (for a

more detailed discussion on convexity, spontaneous symmetry

breaking, and the necessity of the Legendre-Fenchel trans-

form, see Appendix A 3). Another favorable property of the

effective action is that symmetries of SOM are also symmetries

of ŴOM, giving rise to Ward-Takahashi identities [13] and the

study of Goldstone fluctuations in symmetry-broken states of

systems that admit a continuous symmetry.

The simplest approximation to the effective action is the

tree-level approximation. In correspondence to (3) we re-

place the integral over all configurations x in the defini-

tion of Z in (9) by its supremum, which yields W [ j] ≃
ln supx exp(SOM[x] + jTx) − lnZ[0]. The monotonicity of

exp and the involution property of the Legendre transform

(11) then yield

ŴOM[x∗] ≃ −SOM[x∗] + const. (12)

The name “tree level” comes from the fact that if expanded in

x∗, only diagrams of tree shape contribute (see, e.g., Ref. [4],

p. 128, or Ref. [80], the Appendix “Equivalence of loopwise

expansion and infinite resummation”). In the evaluation of

the integral, one therefore neglects all fluctuations. Practically

computing corrections in the OM formalism is complicated

by the action involving a second-order differential operator. In

the following section we review a formalism that circumvents

this difficulty.

3Generalizing this approach, we could also allow for a nonvanish-

ing source j, then minimizing 
[x∗; j] := ŴOM[x∗] − jTx∗.
4Throughout this paper, “i.p.” stands for “in particular.”
5At least in physically reasonable settings: A discontinuity in the

derivative in Ŵ means that W , in turn, would have a flat segment. In

such systems, changing the source field would not affect the mean;

also fluctuations would vanish completely.
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E. Martin-Siggia-Rose-de Dominicis-Janssen path integral

It has been realized by Martin et al. [39] that comput-

ing response functions simultaneously together with correla-

tion functions (8), simplifies practical computations. This is

achieved by introducing a second field, the response field x̃ by

expressing the OM action with Gaussian noise (7) as

SOM[x] = extremize
x̃

SMSRDJ[x, x̃]. (13)

SMSRDJ is the Martin-Siggia-Rose-de Dominicis-Janssen

(MSRDJ) action [39–41,81], defined on the 2M-dimensional

phase space as

SMSRDJ[x, x̃] :=x̃T(∂t x − f (x)) + x̃T D

2
x̃. (14)

Alternatively, one may obtain this result by performing a

Hubbard-Stratonovitch transform, that is, by using the identity

e− x2

2 = 1

i
√

2π

∫ i∞
−i∞ e

x̃2

2
+x̃xdx̃ with the response field as an addi-

tional auxiliary variable x̃. The MSRDJ formulation has the

advantage that only a single first-order differential operator in

time appears.

As for the OM form, we define the cumulant-generating

functional in the MSRDJ formalism as

W [ j, j̃] = ln

∫
Dx

∫
Dx̃ exp(SMSRDJ[x, x̃] + jTx + j̃Tx̃).

(15)

Compared to its OM form, W [ j, j̃] in addition incorporates

the response properties of the system as differentiating once

with respect to j̃ and j each, respectively, yields the response

function, the deviation of the mean of the process caused

by a δ-shaped inhomogeneity. This follows from comparing

(14) with (15) to see that j̃ can as well be regarded as an

inhomogeneity in the stochastic differential equation (2) of

the form

dx(t ) = [ f (x(t )) − j̃(t )] dt + dW (t ). (16)

This form also allows the extension of the MSRDJ formalism

to non-Gaussian noise: If the stochastic increments W have a

cumulant-generating functional Wξ ( j), the last term x̃T D
2

x̃ in

the action (14) becomes Wξ (−x̃) [7]. The form (16) also shows

that W [ j, j̃] is real for real-valued j and j̃; this is because

(15), once x̃ is integrated, is identical to the OM form (10),

W [ j] = 〈e jTx〉 ∈ R, for j ∈ R, where x solves the SDE (16)

and thus x ∈ R.

The effective action in the MSRDJ formalism Ŵ[x, x̃] is

defined in analogy to (11) as

Ŵ[x∗, x̃∗] = j̃Tx̃∗ + sup
j

jTx∗ − W [ j, j̃], (17)

where j̃ is chosen such that the right-hand side is station-

ary. Since W is convex down in j, taking the Legendre-

Fenchel transform with regard to j is involutive; this even

holds for W [ j, j̃] that are nondifferentiable in j. We show

in Appendix A 4 that the transform from j to x∗ renders the

resulting functional differentiable in j̃, given the system is

in thermodynamic equilibrium or given that linear response

functions of cumulants of arbitrary order exist.

Like Z and W , Ŵ contains the full information of the

system, including effects from noise-driven fluctuations. The

definition of Ŵ as the Legendre transform of W implies the

identities

Ŵ(1)
x [x∗, x̃∗] :=

δ

δx∗ Ŵ[x∗, x̃∗] = j,

(18)

Ŵ
(1)
x̃ [x∗, x̃∗] :=

δ

δx̃∗ Ŵ[x∗, x̃∗] = j̃,

which are implicit equations for x∗ and x̃∗, the equations of

state. For the physically relevant value j = 0 of the source

field, normalization in systems with conserved probability

implies that the first equation (18) always admits a solution

x̃∗ ≡ 0 (Appendix). We further show in Appendix A 1 that the

second equation is then equivalent to the requirement that the

fluctuations around the true mean value average to zero within

the OM formalism; the additional Legendre transform from j̃

to x̃, which is not always well defined [82], can therefore be

regarded a formal step only that does not require convexity of

W [ j, j̃] in j̃.

Approximating Ŵ ≃ −S up to the tree level, reduces (18) to

the naive mean-field approximation (3) showing their tight re-

lation. The resulting path maximizes the probability. Because

it ignores fluctuations, we also refer to it as the saddle point

approximation, or the mean-field approximation.

The use of the MSRDJ formalism simplifies the calcula-

tions of the effective action with respect to the OM formalism.

As a consequence of the response fields being only auxiliary

variables, their expectation values vanish, i.e., 〈x̃n〉 = 0 ∀n for

solutions with stationary statistics (for a proof see Coolen [83]

or Appendix A 5 here).

To see why the Legendre transform is closely linked with

the construction of self-consistent solutions for the mean

values of the fields x∗ and x̃∗, it is instructive to rewrite (17)

analogously with y = (x, x̃) and k = ( j, j̃) as6

Ŵ[y∗] = − ln

∫

y

exp(S[y] + kT(y − y∗))

with
δŴ

δk

!= 0. (19)

The latter condition enforces that 〈y − y∗〉 != 0, so we

integrate over ensembles of configurations that obey this con-

straint; in other words, the mean values for both fields x and

x̃ take the values given by the argument of Ŵ. The right-hand

side of (19) will hence depend via y∗ on the self-consistently

determined value. In Sec. II L we will show that this step is

crucial to study systems at bifurcations.

F. Effective equation of motion, vertex functions

To see how the equations of state (18) lead to self-

consistency equations, we expand Ŵ around a reference point

(x̄, ¯̃x)

Ŵ[x∗, x̃∗] =
∞∑

n=0

∞∑

m=0

1

n!m!

δn+mŴ

(δx∗)n(δx̃∗)m [x̄, ¯̃x] δxnδx̃m, (20)

6In the following equation the symbol “
!=” denotes “is supposed to

equal”; that is, the argument of the function is to be determined such

that equality holds.
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where we introduced the derivatives δn+mŴ
(δx∗ )n(δx̃∗ )m , the vertex

functions, as covectors and the deflections δx(t ) := x∗(t ) − x̄

and δx̃(t ) := x̃∗(t ) − ¯̃x together with the notation

δn+mŴ

(δx∗)n(δx̃∗)m [x̄, ¯̃x] δxnδx̃m

:= �n
i=1

∫
dti �

m
j=1

∫
ds j

×
δn+mŴ[x∗, x̃∗]

δx∗(t1) · · · δx∗(tn)δx̃∗(s1) · · · δx̃∗(sm)

∣∣∣∣
x∗=x̄, x̃∗= ¯̃x

× δx(t1) · · · δx(tn) δx̃(s1) · · · δx̃(sm)

:= Ŵ
(n+m)

x . . . x︸ ︷︷ ︸
n−times

x̃ . . . x̃︸ ︷︷ ︸
m−times

δxnδx̃m. (21)

We determine the true mean values x̄ and ¯̃x of the two fields by

solving the two implicit equations Ŵ(1)[x∗, x̃∗]
!= 0 [compare

(18)]. All further Taylor coefficients (or Volterra kernels) in

(20) have physical meanings. Ŵ
(2)
x̃x̃ includes all corrections to

the Gaussian component of the noise and the mixed second-

order derivatives are the inverse of the response functions.

Consequently, Ŵ(2) contains the corrections to the second cu-

mulant since it is the inverse of W (2). The Taylor coefficients

of order n describe the interdependence of measurements at n

points in time. We make this more explicit by considering Ŵ
(3)
x̃xx

in the second equation of state Ŵ
(1)
x̃ [x∗, x̃∗] = j̃(t ) [see second

line in (18)]. We use the decomposition of the effective action

into the action and the fluctuation correction Ŵ = −S + Ŵfl.

and expand Ŵ
(1)
x̃ in a Volterra series as shown for Ŵ in (20).

Then the second equation of state takes the form

j̃(t ) = −
[

∂

∂t
− f ′(x̄)

]
δx(t ) − Dδx̃(t )

+
1

2
f ′′(x̄)δx(t )δx(t ) + · · · +

∫
ds Ŵ

(2)
x̃x,fl.

(t, s) δx(s)

+
1

2

∫
ds

∫
du Ŵ

(3)
x̃xx,fl.

(t, s, u) δx(s)δx(u) + · · · .

(22)

The first equation of state (18) Ŵ(1)
x = j ≡ 0 admits the

solution x̃∗ = 0 if probability is conserved (see, e.g., Ap-

pendix A 1). Thus, Ŵfl. accounts for the corrections due to the

noise. Additionally, we neglect all higher order terms as well

as the remaining components of Ŵ(3), which are subleading, as

we discuss in Sec. II K after (43). Looking at the fluctuation

corrections in (22), we notice that in general the noisy system

exhibits interactions that are nonlocal in time [cf. (21)] even

if the deterministic system does not contain such terms. As a

consequence, it is not possible to define a potential for which

∂t x(t ) = −∂xV (x) even if we set x̃ = 0, in contrast to the

tree-level approximation. The first occurrence of an effective

equation of motion as (22) in the context of neuronal networks

has been presented in Ref. [[84], Eqs. (42) and (43)] using the

Doi-Peliti formalism [85,86] applied to Markovian systems

with discrete state spaces.

We call the derivatives appearing in (20) “full vertices” or

“full vertex functions” as opposed to those of the action S,

which we refer to as “bare vertices.” The vertex functions

not only serve as means to calculate cumulants, as we show

next, but can also be interpreted directly. For example, those

with only one derivative with respect to x̃ (and at least one

with respect to x) can be seen as temporal kernels in an

effective differential equation for the mean (22). Vertices with

more derivatives with respect to x̃ represent effective noise

terms. Henceforth, we will therefore focus our attention on

vertices to obtain effective descriptions of nonlinear stochastic

systems.

G. Extracting statistical dependencies from vertex functions

The computation of the effective action Ŵ or its Taylor

coefficients, the vertex functions Ŵ(n), ultimately serves the

goal to compute observables, the statistics of x.

The second cumulant, the covariance W (2), obeys the rela-

tion

Ŵ(2)[x∗, x̃∗] =

(
δ2Ŵ[x∗,x̃∗]

δx∗2

δ2Ŵ[x∗,x̃∗]
δx∗ δx̃∗

δ2Ŵ[x∗,x̃∗]
δx̃∗ δx∗

δ2Ŵ[x∗,x̃∗]
δx̃∗2

)

=




δ2W [ j, j̃]
δ j2

δ2W [ j, j̃]
δ j δ j̃

δ2W [ j, j̃]
δ j̃ δ j

δ2W [ j, j̃]
δ j̃2




−1

= [W (2)]−1, (23)

which follows by differentiating (18). Differentiating the latter

relation n − 1 times with respect to j, using ∂
∂ j

= ∂x∗

∂ j
∂

∂x∗ =
(Ŵ(2))

−1 ∂
∂x∗ , and repeated application of (23) yields expres-

sions for the nth cumulant, expressed in terms of derivatives

of Ŵ (see also Ref. [87], p. 115ff.).

The resulting expressions have the form of tree graphs,

with vertex functions forming the nodes and edges formed

by the full propagators (Ŵ(2))
−1

(see, e.g., Ref. [4], Sec. 6.3,

or [80], Sec. XIII). The third-order cumulants, for example,

follow as

Depending on the choice of the sources a, b, c, we either

get the third-order cumulant of the variable x [for a = j(s),

b = j(t ), c = j(u)] or the second-order response kernel of the

mean to a perturbation of the system [for a = j(s), b = j̃(t ),

c = j̃(u)], or the change of the autocorrelation due to a pertur-

bation at linear order [for a = j(s), b = j(t ), c = j̃(u)]. The

combination with a, b, c each equal to a j̃ vanishes identically

in stationary states, because the moments of x̃ all vanish (see

Appendix A 2).

Even though we here consider the dynamics of a sin-

gle neuron, the formalism transparently extends to compute

higher order statistics of neuronal activity also across different

neurons, the only difference being that the source fields and

original field will obtain an additional index that identifies the
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respective neuron. Computing such correlations is a topic of

considerable interest in neuroscience [88].

H. Relation between the effective actions ŴOM and ŴMSRDJ

A notable advantage of the MSRDJ formalism is that it can

be easily generalized to arbitrary noise statistics. By integrat-

ing out the response field x̃ we can define the corresponding

OM action by

SOM[x] = ln

∫
Dx̃ exp (SMSRDJ[x, x̃]).

We show in Appendix A 5 that if the effective actions exist in

both formalisms, they are related by

ŴOM[x∗] = extremize
x̃∗

ŴMSRDJ[x
∗, x̃∗]. (24)

Choosing x̃∗ in (24) so that it extremizes ŴMSRDJ, conserves

the full information on the fluctuations. The more convenient

MSRDJ formalism can therefore be used to perform the actual

computation and only subsequently one obtains the physically

and probabilistically interpetable OM form.

The definition (24) hence makes the physically inter-

pretable OM effective action available even if an OM ac-

tion SOM cannot be formulated in the non-Gaussian case.

Therefore, relating approximations of the respective effective

actions can be nontrivial: Cooper et al. derived that ŴMSRDJ

and ŴOM of the KPZ model yield the same effective equations

if one performs a saddle-point approximation in the auxiliary

fields of the Hubbard-Stratonovitch transform of the non-

Gaussian parts of the respective actions [89]. We here provide

a general relation between the two effective actions, that is

valid in full generality beyond specific approximations. It may

therefore be used to check whether a pair of approximations,

each formulated for one of the two effective actions, is equiv-

alent. The finding by Cooper et al. [89] is one such pair of

equivalent approximations.

As a minimal non-Gaussian example, we study the in-

fluence of a nonvanishing third-order cumulant of the noise

defined by its cumulant-generating function

Wξ (y) =
D

2
y2 +

α

3!
y3 + O(y4) (25)

on the generalized OM action, where we assume that α
D2 ≪ 1

and that we can neglect all higher order terms O(y4). A

straightforward perturbation calculation in α, shown in Ap-

pendix A 6, demonstrates that

SOM[x] =
1

2
ln

(
2π

D

)
−

[ẋ − f (x)]2

2D
−

α

3!

[ẋ − f (x)]3

D3︸ ︷︷ ︸
=extremize

x̃
SMSRDJ[x,x̃] + O(α2)

+
α

2D2
[ẋ − f (x)] + O(α2). (26)

So, while (24) holds for arbitrary statistics of the noise, the

analogous relation for the respective actions (13) does not in

this case. Therefore, we encounter the interesting case that

the effective action in the OM formalism might be easier

to determine than the corresponding action. An example

where the noise is non-Gaussian is the stochastic dynamics

of pulse-coupled (spiking) network models. Here typically the

statistics of the noise is close to the Poisson process [11,48].

A simple special case arises if the noise, including all

fluctuation corrections, remains Gaussian. The field x̃ then

still appears quadratically in the effective action. Extremizing

with respect to x̃ in (24) is then identical to performing the

integral over x̃. A corollary is that under these conditions,

the OM effective action has the same form as its tree-level

approximation (7), only with vertices S(n) replaced by ef-

fective vertices −Ŵ(n). For example, the noise matrix D =
S

(2)
x̃x̃ is replaced by −Ŵ

(2)
x̃x̃ , an approximation that is valid if

corrections of order O(x̃3) are small.

I. Loop expansion

The effective action characterizes the state of a stochastic

system. Fluctuations provide corrections to the effective ac-

tion that are commonly defined as Ŵ = −S + Ŵfl.. A standard

approach in statistical physics and quantum field theory to

obtain these corrections is the loop expansion. For an in-

troduction, consult for example the books by Kleinert [[72],

chap. 3.23.] or Zinn-Justin [[4], chap. 7.7.ff]. This technique

has first been applied in the context of neuronal networks

by Buice and Chow [45]; see, e.g., Refs. [8,80] for recent

reviews.

We here briefly outline the loop expansion on the concrete

example for four reasons. First, all terms in the action are

at least of linear order in the response field x̃; its equation

of state therefore always admits a trivial solution ˇ̃x ≡ 0 and

the x̃x̃-propagator vanishes. These are features specific to the

MSRDJ formalism that deserve some comments. Second, to

illustrate that the Feynman diagrams (sometimes referred to

as Mayer graphs [79,90]) in the one-loop approximation are

essentially the same as those that appear in the less standard

functional renormalization group method. Third, the loop

expansion gives us the leading order fluctuation corrections

beyond tree level, Ŵ = −S. It will allow us in subsequent

sections to derive an effective deterministic equation for the

mean and a linear convolution equation for the variance

of the process. One-loop corrections also show which new

vertices are generated along the renormalization group flow.

And, fourth, the loop expansion provides a systematic way

to derive self-consistency equations for the mean of a pro-

cess, an idea that is conceptually continued in the functional

renormalization group approach to arbitrary orders of the

statistics.

In contrast to mean-field theory, the loopwise expansion

can be improved systematically because it is an expansion in

a parameter that measures the fluctuation strength, often re-

lated to the system size. Here we consider a one-dimensional

system, but it also depends on a small parameter that organizes

the loop expansion. In Appendix A 7 we demonstrate that

adding a loop to a given diagram introduces an additional fac-

tor which equals the product of the strength of the nonlinearity

β squared [see (27)] and the variance of the noise D. Thus, in

our case the loop expansion amounts to an expansion in terms

of powers of β2D.
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TABLE I. Translation between graphical elements of Feynman diagrams and corresponding algebraic terms. Amputated legs do not

introduce an additional factor in the algebraic expression but indicate the value of the field X (ingoing leg) or X̃ (outgoing leg) at which

we evaluate the expression. A diagram contributing to an n-point interaction δn

δX̃ (σ1 )···δX (σn )
Ŵfl. has n external amputated legs where the number

of ingoing and outgoing legs corresponds to the number of functional derivatives with respect to X and X̃ . The generalization of the interaction

vertex to higher order interactions is straightforward (see Appendix A 12 for an example). The prefactor is that of a usual Taylor expansion.

Graphical representation Algebraic term (loop expansion) Algebraic term (fRG) Meaning

�0
X X (ω,ω′) = 2πD

ω2+m2 δ(ω + ω′) �X X,λ(ω,ω′) = [Ŵ
(2)
λ ]

−1

X X
(ω,ω′) xx-component of the

bare/full propagator

�0
X̃X

(ω,ω′) = 2π

iω+m
δ(ω + ω′) �X̃X,λ(ω,ω′) = [Ŵ

(2)
λ ]

−1

X̃ X
(ω,ω′) x̃x-component of the

bare/full propagator

– – External (amputated)

leg

1

1!2!
S

(3)

X̃ X X
(ω1, ω2, ω3) = − β

(2π )2 δ(ω1 + ω2 + ω3) 1

1!2!
Ŵ

(3)

X̃XX,λ
(ω1, ω2, ω3) Bare/full three-point

interaction vertex

–
∂Rλ

∂λ
Derivative of the

regulator term

Because the solvable part of our theory is Gaussian, we express cumulants of higher order by cumulants of order two in x and

x̃. We call

the propagators of the theory, where we have chosen a representation in time, but we will often switch to frequency space (and

back). Further ingredients are the bare interaction vertices which, in general, are given by the nonquadratic components of the

action, in our case the Taylor coefficients of the term x̃ f (x). We provide the translation between diagrammatic expressions and

their algebraic counterparts in Table I.

Henceforth, we consider the corrections to the mean value, the variance and one of the three-point vertices in the

neuroscientific case, where f (x) = −x + J g(x). For small activities we can expand the gain function and keep only its linear and

quadratic terms. This is in line with the observation that activation functions are typically convex in the vicinity of the working

point [91]. We define

g(x) = x + αx2.

Therefore, the only bare vertex is S
(3)
x̃xx. We choose this quadratic nonlinearity also for pedagogical reasons, as it constitutes the

simplest nontrivial example which is suitable to demonstrate the methods. For practical calculations it is convenient to switch

the parametrization to

f (x) = −lx + βx2, (27)

where l = 1 − J > 0 and β = αJ > 0. Then in frequency domain the bare propagator reads

�0(ω,ω′) = [−S(2)]−1 =
[(

0 −iω + m

iω + m −D

)
δ(ω + ω′)

2π

]−1

=

(
D

ω2+m2
1

−iω+m

1
iω+m

0

)
2πδ(ω + ω′), (28)

where m = −l + 2βx∗ plays the role of a masslike term in the theory. For the definition of the Fourier transform, as we use it

throughout this paper; see Appendix A 13. Similarly, for the interaction vertex we obtain

042124-9



JONAS STAPMANNS et al. PHYSICAL REVIEW E 101, 042124 (2020)

(a) (b)

(c) (d)

FIG. 1. Mean (a) and variance (b) as functions of the strength β of the nonlinearity for different methods. Parameters: l = 0.5, D = 0.17.

(c) Power spectrum of the system from simulations compared to different approximations. (d) Absolute value (solid lines) and phase (dashed

lines) of the response function. Its zero mode corresponds to the integrated response of a neural network to a delta-shaped perturbation; for

other frequencies the response is weighted according to the respective mode. The results of the one-loop and the fRG BMW approximation

coincide at this resolution. For comparison between simulations and theory results of the response of the system was subject to small (but not

infinitesimally small) perturbations; see Sec. II J, Fig. 2. Parameters for (c) and (d): l = 0.5, D = 0.17, and β = 0.15.

The frequencies are conserved at each vertex and each prop-

agator. Since in the action S[x, x̃] the function f (x) is multi-

plied with one x̃ [see (14)], we conclude that the nth Taylor

coefficient of f (x) leads to an interaction vertex with n

incoming x-legs and one outgoing x̃-leg.

1. One-loop correction to the mean value

The first correction to the mean value is given by the

contribution known as the tadpole diagram that consists of one

interaction vertex whose two incoming legs are connected by

an undirected propagator (�XX ):

(29)

Henceforth, the σi denote the external frequencies of the

derivatives of the effective action, which are represented by

wiggly lines. In Appendix A 7 we provide a brief summary

of how to evaluate the Feynman diagrams that we use in

this paper. Intuitively, the above diagram represents the naïve

estimation for the correction to the mean (6) that is obtained

by taking the expectation value of the quadratic nonlinearity

(vertex with two incoming legs) over the Gaussian fluctuations

around the stationary mean (propagator connecting these two

legs). A conceptual difference is, though, that the mean value

x̌ here affects the point about which we perform the linear

response approximation, thus it appears on the right-hand side

through the value of the mass term m(x̌) in the propagators:

The approximation is hence self-consistent in the mean, defin-

ing x̌ as the solution of the equation of state (18) as

0 = j̃ = −S
(1)
x̃ + Ŵ

(1)
fl,x̃ = f (x̌) +

βD

2 |m(x̌)|
(30)

= −l x̌ + β x̌2 +
βD

2| − l + 2β x̌|
. (31)

But here, too, we take into account the nonlinearity only by

considering its effect of shifting the mean value and therefore

the linear order (−l → m(x̌)), as in our naïve approximation

in linear response in (4), and then calculate the expectation

value of the nonlinearity using this approximation. This con-

tribution is indeed the only one to consider at this loop order as

we demonstrate in Appendix A 7. The result for the corrected

mean value as a function of the strength of the nonlinearity

is shown in Fig. 1. Due to conservation of frequencies at the

vertex, there are only corrections for the zero frequency mode

of the mean value.

2. One-loop correction to the variance and higher order statistics

To compute the one-loop corrections to the variance, we

determine the corrections to the propagator by using the

relation � = (Ŵ(2))
−1

(23). The first-order correction to Ŵ(2)
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is given by the sum of all one-loop diagrams with two external

legs. The diagrams and the corresponding expressions can be

found in Appendix A 7 and finally yield

�xx(t ) = −

[
D
[
m2

1 − (2m)2 + A
]

2
(
m2

1 − m2
2

)
m1

em1|t |

+
D
[
(2m)2 − m2

2 − A
]

2
(
m2

1 − m2
2

)
m2

em2|t |

]
,

for the correlation function, where

A = 2β2D/m

m = −l + 2β x̌

m1/2 = 3m/2 ±
√

m2/4 − A.

The value at t = 0 equals the variance 〈〈x〉〉, which is plot-

ted in Fig. 1(b). In this figure we compare the mean value

and the variance computed using various methods, where

we use the solution by the Fokker-Planck equation [92] as

the ground truth, which indeed agrees very well with the

simulated results. In particular, we observe that the one-loop

approximation is markedly better than the tree-level approx-

imation, which predicts 〈x〉 = 0 and 〈〈x2〉〉 = 0.17 for all β.

Figures 1(c) and 1(d) show the power spectrum [�xx(σ )]

and the response function [�x̃x(σ )] of the system. Like the

correction to the three-point vertex (compare Appendix A 7),

the corrections to the propagator are largest for σi = 0 and

decay algebraically with increasing frequency. In particular

the fluctuation corrections to �x̃x(σ ) lead to an elevation of

the power at low frequencies. This qualitative effect depends

only on coarse features of the system, such as the convexity

of the nonlinearity. One may therefore expect qualitatively

similar features in networks which operate in regimes in

which the neuronal transfer function is expansive, as typical

for the low rate regimes of the cortex [91].

In principle we could try to find a more accurate approxi-

mation of the effective action by going to higher loop orders.

However, this already becomes unwieldy at the next order

because the number of diagrams quickly increases and the

integration of the loop momenta becomes numerically expen-

sive. Instead, we will use renormalization group techniques to

obtain self-consistency at arbitrary levels of the statistics.

Even though the one-loop calculations are not confined

to a certain parameter range, we may not disregard the fact

that strictly speaking there is no stationary solution for our

particular choice for g(x), because x escapes towards infinity

almost surely for t → ∞. However, for finite times and

l/β ≫
√

D, the second unstable fixed point x1 = l/β is far

away from the stable fixed point x0 = 0 measured in units of

the fluctuations. Therefore, the escape probability is negligible

and we confine our analysis to this case by effectively setting

the escape probability to zero, in particular for the otherwise

exact Fokker-Planck solution to which we compare the results

of the loop expansion. As we show in Appendix A 7 d, the

position x1 of the second unstable fixed point and the strength

of the nonlinearity are controlled by the same effective

parameter. In the presented example one therefore cannot

increase the magnitude of fluctuation corrections without

also increasing the escape rate. Figure 6 shows a different

system that has notable fluctuation corrections. A rigorous

analysis of the complete setting including escape is a problem

on its own requiring the introduction of a probability for a

path conditioned on the requirement that it has not escaped

to infinity. For a leak term equal to zero, this analysis

has recently been performed [93]. Another possibility is to

consider the time-dependent problem, as is done, for example,

in the context of laser physics [94].

The stochastic differential equation considered here is sim-

ilar to a typical differential equation describing the evolution

of the membrane potential of a neuron fed by fluctuating input

from the network. Examples are the quadratic integrate-and-

fire neuron [95] or the exponential integrate-and-fire neuron

[96]. The escape of the dynamical variable across the second,

unstable fixed point here denotes the firing of the cell. The

biophysical mechanism of the repolarization subsequently

resets the membrane potential to a low value after the escape.

The firing rate of a model can in principle be computed by

determining this probability of escape. One-loop corrections

to the escape probability, however, require the computation of

Gaussian fluctuations around the most likely escape path; the

path itself is here a function of time. Thus it is more com-

plicated than determining the stationary statistics considered

here (see, e.g., Ref. [97] for more details on rare events in

metastable systems).

We will demonstrate in the next chapter by comparing

to simulations that neglecting the possibility of escaping is

justified in the presence of a leak term for sufficiently low

noise and nonlinearity.

J. Time dependence of statistics

Applications often also require the study of the time-

dependent response of a system. In the context of neuronal

networks, for example, we would like to quantify the response

of the system to an applied stimulus. It is a priori not clear

what the effect of noise is for a response that is driven

by a transient stimulus. The simplest approximation (4) that

neglects the effect of the noise also provides us with the lowest

order approximation of such a response. A special “input” is

the noise-mediated influence of the past of the mean value of x

on itself. The following example illustrates how the effective

equation of motion (22) with vertex functions computed in

one-loop approximation explains the nontrivial interplay of

noise and nonlinearities.

1. Relaxation of a small departure from the mean

As an example, we consider the response of the system to

a stimulus, represented by the deflection of the system from

its mean value at time t0 = 0 by setting j̃(t ) = −δx(0) δ(t )

in (22) and examine the equation of motion that describes its

relaxation back to the baseline. We derive the equation of mo-

tion by solving the second equation of state, for example, in

the form of (22), for ∂tδx(t ). We ensure that we consider only

nonescaping trajectories by setting x̃ ≡ 0 (see Appendix A 1).

By inserting the tree-level approximation Ŵfl. = 0 into (22),

we obtain

∂tδx(t ) = −lδx(t ) + βδx(t )2,
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(a)

(b) (c)

FIG. 2. Relaxation after deflection described by effective equation of motion. The one-loop result is given by (32) and the Fokker-Planck

result by the coupled differential equations (A35) and (A36). For the simulations, we let the activity of the system decay to its baseline and then

stimulate it by a small perturbation δx0 applied to the current value of x. Subsequently, the activity relaxes back to its stationary state. (a) Mean

activity averaged over 2.9 × 109 trials of the relaxation process. (b) Difference between the various approximations and the simulation to the

Fokker-Planck result. The linear response (dotted light blue) contains solely the terms in (32) that are linear in δx. (c) Different contributions

to the right-hand side of (32). Sum shows the full right-hand side (blue); linear part in δx of the tree-level term (dashed salmon pink); quadratic

part in δx of the tree-level terms (dashed green); linear term of one-loop correction (dashed yellow); quadratic term of one-loop corrections

(dashed violet).

which we can integrate analytically

δx(t ) =
c

elt + cβ

l
(1 − elt )

= ce−(l−cβ )t+O((lt )2 ) + O

((
βc

l

)2)
, where c = δx(0).

We notice that the second term in the denominator is due to

the nonlinearity and leads to a slower relaxation of the system

back to its mean value compared to the time constant l−1

of the linear part of the dynamics. In the previous section,

Sec. II I, we computed the one-loop corrections to Ŵfl. which

we can insert into (22) to obtain a one-loop approximation of

the equation of motion

∂tδx(t ) = m δx(t ) + β δx(t )2 −
2β2D

m

∫ t

t0

dt ′ e2m(t−t ′)︸ ︷︷ ︸
∝Ŵ

(2)
x̃x,fl.

(t,t ′ )

δx(t ′)

−
8β3D

m

∫ t

t0

dt ′
∫ t

t0

dt ′′ H (t ′ − t ′′)e2m(t−t ′′ )

︸ ︷︷ ︸
∝Ŵ

(3)
x̃xx,fl.(t,t

′,t ′′ )

× δx(t ′)δx(t ′′), (32)

where H (t ) denotes the Heaviside step function. Let us inspect

the single terms in (32) in more detail: The first line is the

tree-level contribution. Ŵ
(2)
fl. mediates a linear self-feedback

for the departure δx of the process from its stationary value.

One of the interpretations of Ŵ
(3)
x̃xx, writing it as Ŵ

(3)
x̃xx(t, t ′, t ′′) =

δ
δx(t ′′ )

Ŵ
(2)
x̃x (t, t ′), is that it quantifies the change of the linear

response kernel of the self-energy at times t, t ′ due to a change

of the activity at time t ′′. This shows that only the interplay

between an interaction and noise, as apparent by the prefectors

composed of both β and D, creates a self-interaction of

the mean that is nonlocal in time. This phenomenon is also

generally observed if certain degrees of freedom are implicitly

taken into account to describe the quantity of interest (see

Ref. [98], e.g., chap. 1.6).

An alternative way to arrive at (32) is to derive ODEs

for the first two moments from the Fokker-Planck equation

[92] and to use a Gaussian closure. The loop expansion then

amounts to a Taylor expansion of the Fokker-Planck solution

in δx and assuming that 〈〈x3〉〉 ≪ 〈〈x2〉〉, 〈〈x〉〉 (known as Gaus-

sian closure), as we show in detail in Appendix A 8. In Fig. 2

we compare the full Fokker-Planck solution with Gaussian

closure to the one-loop result. Indeed, the semilogarithmic

plot of the relaxation as a function of time shows an elevated

time constant due to fluctuations compared to the tree-level

approximation. Analyzing the origin of the elevated time

constant, Fig. 2(c) compares the different contributions to

the right-hand side of (32). The linear part of the tree-level

approximation yields the largest contribution. For sufficiently

long times, we find that the linear part of the one-loop

correction comes next with opposite sign compared to the

term stemming from the bare interaction: this shows that only

the cooperation of the nonlinearity with the fluctuations in
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the system causes this correction and is more important than

the nonlinearity itself, the quadratic tree-level contribution.

Furthermore, the three-point interaction gets enhanced by the

fluctuation corrections, so that in total, the relaxation is slower

than in the deterministic system.

In the context of neuronal dynamics this example shows

how the response of a system to a stimulus is shaped by

the presence of nonlinearities and noise. An increase of the

timescale of the response may be employed by such systems

to implement increased memory for past stimuli. In hetero-

geneous networks, where the linear part of the dynamics is

given by a matrix that couples different neurons as dx(t ) =
−x(t ) + J x(t ) dt + · · · , the effective leak term m = J − 1

correspondingly becomes a matrix. The ith eigendirection

of the matrix then evolves with timescale (λi − 1)−1. For

random connectivity, the eigenvalues are typically circularly

distributed in the complex plane [99]; thus a quasicontinuum

of timescales appears already in tree-level approximation [[1],

Fig. 6]. The one-loop corrections to the self-energy generate

additional timescales, as shown in Eq. (32) and also Eq. (A32)

and Eq. (A33) for the one-dimensional case. The emergence

of multiple timescales has been discussed previously in the

literature. Some works proposed multiple adaptation mecha-

nisms as the origin [100]. Others have shown that timescales

of responses to stimuli may change systematically within the

hierarchy of a complex neuronal network, from fast timescales

in early areas, to long ones in higher levels of the hierar-

chy [101]. Loop corrections obtain an important meaning

when considering the influence of nonrecorded neurons on

the correlation structure of the observed ones [48]: A one-

loop correction to the self-energy in this context contains the

reverberation of activity within the network, thus including

the indirect effect due to the presence of nonrecorded neurons.

Such reverberations generate additional timescales in the mu-

tual coupling kernel between individual neurons, mediated via

the nonrecorded intermediate cells.

2. Power spectrum

So far we have discussed an effective equation of motion

for the mean value of the process that also allowed us to obtain

an interpretation for the various vertex functions. We can

ask a corresponding question for the second-order statistics,

namely, whether there is a linear system that possesses the

same second-order statistics as the full nonlinear system. Such

a reduction may be useful to obtain insights into the structure

of network fluctuations and also to reduce the complexity of

stochastic nonlinear systems to simpler, linear ones.

Indeed, we can use the expression for the Hessian (23) of

the effective action to obtain the action of a linear system that,

up to second order, reproduces the stationary statistics of the

full system. To this end, we define

Slin := −
(
δx̃TŴ

(2)
x̃x δx + 1

2
δx̃TŴ

(2)
x̃x̃ δx̃

)
. (33)

The corresponding equation of motion reads

d

dt
δx(t ) = −lδx(t ) +

∫
dt ′Ŵ(2)

x̃x,fl.(t, t ′)δx(t ′) + ξ (t ),

where 〈ξ (t )〉 = 0

and 〈〈ξ (t )ξ (t ′)〉〉 = Dδ(t − t ′) + Ŵ
(2)
x̃x̃,fl.(t, t ′). (34)

By construction this stochastic integro-differential equa-

tion (34) reproduces the stationary variance �xx(t, s) =
W (2)

xx (t, s) = 〈δx(t )δx(s)〉 as well as the linear response

�xx̃(t, s) = W
(2)

xx̃ (t, s) = 〈δx(t )δx̃(s)〉 of the full system, be-

cause the solution of the Gaussian system (33) implicitly

inverts the kernel Ŵ(2), which, by (23), yields the covariance

matrix W (2). We could also take into account the effect of

transient values of x(t ) on the variance to obtain a correspond-

ing reduction that is valid in the nonstationary case. For this,

however, we would need to know Ŵ
(2)
x̃x,fl. evaluated at arbitrary

x(t ). In this case, it is therefore more convenient to use the

second Legendre transform that treats the variance as given,

just like x∗ in the case of the first Legendre transform, as

shown by Bravi and co-workers [102].

The construction of a linear system leads to a new per-

spective of the effect of the nonlinearity: Up to the second

cumulant, the nonlinear system is equivalent to a linear one

with a specific causal memory kernel and a corresponding

nonwhite Gaussian noise term, caused by the self-energy

correction Ŵ
(2)
x̃x̃ .

K. Functional renormalization group

The loopwise expansion, by virtue of approximating the

effective action, yields self-consistent equations for the mean.

But we saw above that also the second-order statistics and the

higher order vertex functions experience fluctuation correc-

tions. One would therefore like to have a scheme that is self-

consistent with regard to these higher order vertex functions,

too.

One possible approach that has lead to reasonable results,

is to correct the mean, the propagator and the interaction

vertex by the one-loop results and therein replace the bare

quantities by the corrected ones to gain an even better ap-

proximation. This procedure is repeated until the result even-

tually converges. This approach corresponds to taking into

account only specific diagrams with infinitely many loops and

is called self-consistent one-loop approximation. It typically

corrects the mean value and the self-energy while keeping

the interaction vertices at their bare values; it is then known

as the “Hartree-Fock approximation” [8,79]. But of course

this scheme can be extended to arbitrary order of the vertex

functions. A formal way to derive such approximations sys-

tematically is by multiple Legendre transforms, an idea going

back to the seminal work by De Dominicis and Martin [103]:

One reexpresses interaction potentials in terms of connected

correlation functions. Parquet equations are, for example,

obtained by the fourth Legendre transform of an even theory

(see, e.g., Ref. [79] for a review, especially chap. 6.2.10).

We here want to follow a different scheme that is inher-

ently self-consistent to arbitrary desired orders, the functional

renormalization group (fRG). The fRG scheme naturally

takes into account fluctuation corrections by renormalizing

the mean value, the propagators, and all interaction vertices

simultaneously.

Technically, the functional renormalization group (fRG)

[35] is an alternative way to calculate Ŵ. It is one of the

exact renormalization group (eRG) schemes [36,104,105],

in essence going back to the seminal work by Wegner and

Houghton [34]. It does not rely on an expansion in a small
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parameter, in contrast to the loopwise expansion, but it is

nevertheless represented by diagrams with a one-loop struc-

ture. The technique induces an infinite hierarchy of coupled

differential equations for Ŵ(n), so that in practice, we have to

apply approximations, typically by truncating the hierarchy.

Yet this technique is, as all exact renormalization group

schemes, exact only on the level of the full functional Ŵ[x, x̃]

and not for a particular truncation in terms of a subset of Ŵ(n).

The essential technical trick of the fRG is to simplify the

theory by adding an initially large quadratic term − 1
2
yTRλy in

the fields y, parametrized by the regulator Rλ, to the action. It

is a differentiable function of a so-called flow parameter λ and

can be chosen arbitrarily up to the following properties:

lim
λ→�

|Rλ| = ∞ and lim
λ�0

Rλ = 0. (35)

The first property ensures that the theory for λ = � has no

fluctuations, and its vertices correspond to the ones of the

bare action, while for λ = 0, the original system is recovered.

For systems that exhibit symmetries it is often necessary

that the regulator is consistent with these symmetries of the

effective action, so that they are conserved during the flow.

To interpolate between the two limits of the noninteracting

and the full system, a functional differential equation for the

effective action is derived by differentiating with respect to

λ. This is the Wetterich equation [35], whose derivation for

our setting, in particular for the presence of the response field,

we will sketch in the following adhering to the conventions

of Berges et al. [36]. We will derive it for the effective

action evaluated at stationary X ∗ and X̃ ∗ so that the resulting

equation boils down to an ODE.

Since the regulator Rλ is intended to suppress fluctuations,

it is sufficient for our case to add it to the off-diagonal terms

of the free part of the action, defining

Sλ[X, X̃ ] = S0[X, X̃ ] + �Sλ[X, X̃ ] + Sint[X, X̃ ], where

�Sλ[X, X̃ ] = −
1

2

∫
dω

2π

(
X (−ω)

X̃ (−ω)

)(
0 1

2
Rλ

1
2
Rλ 0

)(
X (ω)

X̃ (ω)

)

Sint[X, X̃ ] = −β

∫
dω

2π

∫
dω′

2π
X̃ (ω)X (ω′)X (−ω − ω′).

(36)

By (28), the regulator modifies the leak term m, thus control-

ling the variance of the fluctuations. A general discussion on

the choice of frequency-dependent regulators can be found

in Ref. [106]: The XX -diagonal element must always be

zero to maintain normalization (see also Appendix A 1). A

regulator on the X̃ X̃ element corresponds to a modification

of the second cumulant of the driving noise. For systems in

equilibrium, the fluctuation-dissipation theorem constrains the

choice of the regulator further.

For the choice in (36), the bare propagator reads

�0
λ(ω,ω′) =




D

ω2+(m+ 1
2

Rλ )2

1

−iω+m+ 1
2

Rλ

1

iω+m+ 1
2

Rλ
0


2πδ(ω + ω′).

We notice that Rλ has to be negative to avoid a vanishing

leak term (since m < 0) and thus a fluctuation singularity at

ω = 0 along the RG trajectory. We define Ŵ̃λ[X ∗, X̃ ∗] as the

Legendre transform of the cumulant-generating functional,

given by

Wλ[J, J̃] = ln

∫
DX

∫
DX̃

× exp(Sλ[X, X̃ ] + JTX + J̃TX̃ ),

where we used the abbreviation JTX =
∫

dω J (ω)X (ω).

Defining Ŵλ, we remove the “direct” effect of the regulator

Ŵλ[X ∗, X̃ ∗] := Ŵ̃λ[X ∗, X̃ ∗] + �Sλ[X ∗, X̃ ∗], (37)

so that limλ→0 Ŵλ = Ŵ and limλ→� Ŵλ = −S. The latter limit

follows, because at λ = � the regulator suppresses all fluc-

tuations, so that the mean-field approximation Ŵ̃� ≃ −S� =
−(S + �S�) becomes exact. Consequently, by definition

(37), one then obtains the stated limit [see also Eqs. (2.9)

to (2.12) in Ref. [36]). To derive the flow equation for the

effective action of the theory defined in (36), we take the

partial derivative of Wλ with respect to the flow parameter and

deduce from this the respective derivatives of Ŵ̃λ and Ŵλ (for

details consult Appendix A 9), which results in the Wetterich

equation

(38)

where in this section, lines denote full propagators

�λ :=
(
Ŵ̃

(2)
λ

)−1 =

[
Ŵ

(2)
λ +

(
0 1

2
Rλ

1
2
Rλ 0

)]−1

(39)

and open squares represent ∂Rλ

∂λ
. The translation between graphical representations and algebraic expressions is also shown in

Table I. For the final result (λ = 0), the choice of the concrete form of Rλ is arbitrary as long as it fulfills (35) and does not

lead to acausal terms in the action. The interpretation of Ŵλ along the trajectory of the flow equations, however, depends on the

regulator.

The simplest choice is the uniform regulator, for example Rλ = −λ. In this case all frequencies get damped equally. Its

equivalence to an additional leak term [compare (14) and (39)] bears a second interpretation: We may as well interpret each
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point along the solution of the flow equation as one system with a different value for the leak term. In this context, a vanishing

value and hence a pole in the propagator at vanishing frequency becomes meaningful again: it corresponds to a critical point

where fluctuations dominate the system behavior.

The simplest measure to extract from Ŵλ is the mean value x̌λ defined by the equation of state Ŵ̃
(1)
x̃,λ[x∗

λ, x̃∗
λ] = 0 .7

Differentiating this equation with respect to λ leads to

0 =
d

dλ
Ŵ̃

(1)
λ

(ω) =
∂Ŵ̃

(1)
λ

(ω)

∂λ
+
∫

dω Ŵ̃
(2)
λ (ω,ω′)

∂

∂λ

(
X̌λ(ω′)
ˇ̃Xλ(ω′)

)

⇔
∂

∂λ

(
X̌λ(σ )
ˇ̃Xλ(σ )

)
= −�λ(σ )

[
∂Ŵ

(1)
λ

(−σ )

∂λ
+

1

4π

∂Rλ

∂λ

(
X̌λ(σ )
ˇ̃Xλ(σ )

)]
. (40)

To obtain (40), we have multiplied the line above by the propagator �λ and used �λŴ̃
(2)
λ = 1. We observe that we now need a

flow equation for Ŵ̃(1), which we obtain by differentiating (38) with respect to (x, x̃) leading to

(41)

(42)

In the last step for both diagrams we defined �λ(ω,ω′) =: �λ(ω)δ(ω + ω′) and Rλ(ω,ω′) =: Rλδ(ω + ω′)/(2π ). Since the

three-point vertex conserves momentum Ŵ
(3)
λ (ω,ω′, ω′′) ∝ δ(ω + ω′ + ω′′), the external momentum is fixed at σ = 0. Inserting

these equations into (40) yields the final results, which are equivalent to Ref. [107], Eq. (210), and Ref. [108], Eq. (7.94), Fig. 7.7.

Because of the closed response loop in (41), the right-hand side of this equation is always identically zero leading to ˇ̃Xλ = 0 ∀ λ.

The same applies to all other diagrams with one loop and one external leg different from (41) or (42), because they also contain

either �x̃x̃ = 0, response loops, or a vertex Ŵ
(3)
XXX,λ. The last is always identically zero as shown in Appendix A 2. So only (42)

contains information on the flow of X̌λ, finally yielding

∂

∂λ
X̌λ(σ ) = −�XX̃ ,λ(σ )

[
∂Ŵ

(1)

X̃ ,λ
(−σ )

∂λ
+

1

4π

∂Rλ

∂λ
X̌λ(σ )

]
. (43)

The right-hand side of this equation depends on �λ and Ŵ
(3)

X̃XX,λ
via (42) which in turn are also defined by flow equations

containing vertices of the respective next two orders. This induces an infinite hierarchy. A first approximation of the mean

value X̌λ is gained by truncating the hierarchy after Ŵ
(1)
λ , that is using the bare quantities for �λ and Ŵ

(3)

X̃XX,λ
and integrating

the flow (43). We then also get a corrected value for the variance by inserting X̌λ into �0
XX . The flow equations at this level of

approximation can be integrated exactly: They recover the one-loop approximation.

We can improve the accuracy by taking into account the flow of higher derivatives of Ŵ. In this work we included the flow

of the self-energy and the interaction vertex Ŵ
(3)

X̃XX
, but neither the one of Ŵ

(3)

X̃ X̃X
and Ŵ

(3)

X̃ X̃ X̃
nor that of all higher order vertices.

The one loop correction of Ŵ
(3)

X̃ X̃ X
(Ŵ

(3)

X̃ X̃ X̃
) involves two (three) xx-propagators, so that, in systems with small fluctuations, which

scale with D, this diagram is less important than the others. Compared to the one-loop correction of Ŵ
(2)
x̃x̃,fl., Ŵ

(3)

X̃ X̃X
bears the same

number of xx-propagators, but one additional interaction, which scales with the other small factor β. Therefore we neglect the

corrections to Ŵ
(3)

X̃ X̃X
and Ŵ

(3)

X̃ X̃ X̃
but not to Ŵ

(3)

X̃XX,λ
. In conclusion, we renormalize exactly those terms that also appear in the bare

7The condition Ŵ
(1)
x̃,λ[x∗

λ, x̃∗
λ] = 0 would of course lead to the same result because we are eventually interested in λ = 0, where both quantities

agree, but using Ŵ̃ leads to the occurrence of the propagator including the regulator term in (40), which is more convenient.
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action. Under these constraints, the nonvanishing and non-negligible diagrams for the self-energy are given by

The translation of these diagrams is shown in Appendix A 10

together with the respective diagrams for the interaction ver-

tex.

In general, the diagrams have the same form as those

that appear in the fluctuation expansion, except for the pres-

ence of a single regulator in one of the propagator lines.

The combination of two propagators “sandwiching” a regula-

tor �λ(ω,−ω) ∂Rλ

∂λ
(ω,−ω)�λ(ω,−ω) is called “single scale

propagator” because the regulator is often chosen in a way

such that its derivative is peaked around frequencies with

|ω| = λ, thus contributing at a single scale. Due to the one-

loop structure of the diagrams and the conservation of fre-

quencies at the vertices, we have to perform one integral

over an internal frequency for every possible combination of

fixed external frequencies. Therefore, the numerical evalua-

tion of Ŵ(n) becomes increasingly computationally expensive

for higher orders because at nth order we have n − 1 inde-

pendent external frequencies. For practical computations we

thus have to truncate the hierarchy after n = 3 if we want to

keep the full frequency dependence of Ŵ(n). Even at this order,

the integration takes many hours on a usual desktop PC when

we choose the external frequencies to range from −25 to 25

with a resolution of 0.1. Therefore, it is legitimate to ask if

one can reduce the number of required frequency integrals by

assuming a simplified frequency dependence of higher order

vertices.

1. The BMW scheme

A scheme that assumes a simplified momentum depen-

dence of higher order vertices has been suggested by Blaizot,

Méndez, and Wschebor (BMW) [54,109]. It has been success-

fully applied for example to the Kardar-Parisi-Zhang model

[51]. The principal idea is to neglect the frequency depen-

dence of the effective action as much as possible. The most

radical choice in this respect would be to assume it to be

constant, which is known as the local potential approximation

(LPA). BMW refined this scheme by including the exact

frequency dependence of all vertices up to a certain order

s, which are functions of s − 1 external frequencies, and to

approximate vertices of the next two orders by evaluating

the additional derivatives at their zero frequency components

obtaining a partial differential equation [110]. We will pursue

a different route by deriving approximate flow equations for

Ŵ(s+1) and Ŵ(s+2) with the simplified frequency dependence.

More precisely, we consider a typical contribution of a

vertex within the Wetterich flow equation for the vertex Ŵ(s)

containing

Ŵ
(s+1)
λ (σ1, . . . , σs + ω,−ω),

(44)
Ŵ

(s+2)
λ (σ1, . . . , σs, ω,−ω),

where ω is the loop frequency, that represents the frequency

at the regulator. For simplicity we do not specify different

components of the field. For the approximation we assume the

vertices to depend only weakly on ω and therefore set ω = 0

in (44), replacing the vertices by

Ŵ
(s+1)
λ (σ1, . . . σs, 0),

Ŵ
(s+2)
λ (σ1, . . . σs, 0, 0). (45)

The frequency dependence on ω in the propagators and the

regulator is, however, kept.

The second step of the BMW scheme allows the closure

of the system: Due to the vanishing momentum on one or

two legs of the vertices (45), the vertex functions with s + 1

and s + 2 legs can be expressed as the derivative of Ŵ
(s)
λ with

respect to a uniform (background) field X ∗
0 := X ∗(σ = 0):

Ŵ
(s+1)
λ

(σ1, . . . , σs, 0) =
δ

δX ∗
0

Ŵ
(s)
λ

(σ1, . . . , σs) (46)

Ŵ
(s+2)
λ

(σ1, . . . , σs, 0, 0) =
δ2

δX ∗
0

2
Ŵ

(s)
λ

(σ1, . . . , σs). (47)

If we now use (46) and (47) to replace Ŵ
(s+1)
λ and Ŵ

(s+2)
λ by

the ordinary derivatives of Ŵ
(s)
λ with respect to the zero modes

of X , X̃ , we close the set of flow equations and additionally

we take into account the flow of order s + 1 and s + 2, at least

approximately. Since we reduced the number of independent

frequencies by one (or two, respectively), the computation

time decreases significantly.

But the resulting equation is a partial differential equation

in λ and X ∗
0 [see Ref. [110], Eq. (19)]; we hence have to

evaluate the derivatives with respect to X ∗
0 for every step at
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FIG. 3. Implementation of the BMW scheme within the vertex

expansion. In the original formulation (top) we have to evaluate the

derivatives δ/δX ∗(0) numerically at each λ. In the new interpretation

(bottom) we derive an additional flow equation for Ŵ(3)(σ,−σ, 0)

(dashed line).

which we compute ∂λŴ
(s). Below we develop an alternative

scheme that circumvents this complication and entirely stays

within the realm of a vertex expansion.

2. Removing the PDE

We aim to apply the BMW approximation at order s = 2,

thus keeping the full frequency dependence of the self-energy.

However, within the vertex expansion scheme it remains

unclear how to compute the derivatives of Ŵ(2) numerically.

This is because at each given λ we know the value of Ŵ(2) only

for the true mean value X̌λ(0), but not in a vicinity around it;

we therefore cannot approximate the derivative by a ratio of

finite differences.

We can circumvent this problem by deriving an additional

flow equation for Ŵ
(3)
λ (σ1, σ2, 0) (illustrated in Fig. 3; the

more complex situation with x and x̃ fields will be addressed

below) and in principle also for Ŵ
(4)
λ (σ1, σ2, 0, 0), which we

neglect in our model because the largest contribution of Ŵ(4)

is suppressed by a factor β due to an additional interaction

vertex. We obtain this flow equation by differentiating the one

for Ŵ
(2)
λ with respect to X ∗(0), i.e., δ

δX ∗(0)
∂λŴ

(2)
λ = ∂λŴ

(3)
λ and

then setting the frequencies of the original three-point vertices

at those legs to zero that are connected to the single scale

propagator, in line with the BMW scheme. But we need to

keep the dependence on ω of the vertices that emerge when

we differentiate a propagator by the background field, so that

we treat the frequency dependence of this additional vertex

like that of the regulator in the original diagram. Otherwise

we would make an additional approximation on top of BMW.

Thus, drawing only the first argument of the propagators, in

diagrammatic language we obtain

δ

δX(0)

∂Γ
(2)
λ

(σ1,−σ1)

∂λ
=

δ

δX(0)

1

2 σ1 −σ1

σ1 + ω

ωω

(1) (2)

BMW
= −

1

2

ω

ω

σ1 + ω
ω

(5)(3)

(4)

σ1 0

−σ1

−

1

4

ωω

σ1 + ω σ1 + ω

(7)(6)

(8)

σ1 −σ1

0

−

1

2

σ1 + ω

ωω

σ1

0

−σ1(9) (10)

+ σ1 ↔ −σ1

where the vertex functions are given by

(1) Ŵ
(3)
λ

(σ1, ω,−σ1 − ω), (2) Ŵ
(3)
λ

(−σ1,−ω, σ1 + ω),

(3) Ŵ
(3)
λ

(σ1, 0,−σ1), (4) Ŵ
(3)
λ

(−σ1, 0, σ1),

(5) Ŵ
(3)
λ

(ω,−ω, 0), (6) Ŵ
(3)
λ

(σ1, 0,−σ1),

(7) Ŵ
(3)
λ

(−σ1, 0, σ1), (8) Ŵ
(3)
λ

(σ1 + ω,−σ1 − ω, 0),

(9) Ŵ
(4)
λ

(σ1, 0,−σ1, 0), (10) Ŵ
(3)
λ

(−σ1, 0, σ1).

The crucial point to notice is that all vertices that appear

in the diagrams have only two nonzero frequencies. The set

of differential equations is therefore closed; the last diagram

requires a four-point vertex for which we could obtain a

flow equation analogously. So we have found an explicit flow

equation for Ŵ
(3)
λ (σ1, σ2 = −σ1, 0), indicated by the dashed

line in Fig. 3. As a consequence we have to solve a coupled

set of ODEs instead of a single PDE.

If we do not want to neglect the flow of the four-point ver-

tex completely, we can differentiate the diagrams once again,

which leads to a flow equation of Ŵ
(4)
λ (σ1, σ2, 0, 0). This flow

equation then depends on Ŵ
(3)
λ (σ1, σ2, 0), Ŵ

(4)
λ (σ1, σ2, 0, 0),

and Ŵ
(5)
λ (σ1, σ2, 0, 0, 0). Due to the emergence of the latter,

the set of equations can be closed only if we truncate the series

at some order (unlike the original BMW scheme).

The scheme described above also generalizes to the

case where we have two fields components x, x̃ and the
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(a)

(b)

(c)

FIG. 4. Ŵ
(3)
x̃xx,fl. computed by fRG schemes. (a) Full frequency dependence as a result of the calculation that takes into account the flow

of the mean value, Ŵ
(2)
fl. , and Ŵ

(3)
x̃xx,fl.. (b) and (c) Ŵ

(3)

X̃XX,λ,fl.
(−σ2 − σ3, σ2, σ3) along the sections σ3 = 0 (b) and σ2 = −σ3 (c), as indicated by

the white dashed lines in (a); comparison to the respective types of vertices that appear in the BMW approximation. Ŵ
(3)

X̃ X X,λ,fl.
(−σ2, σ2, 0)

in panel (b) quantifies the change of the linear response function due to an altered constant mean activity (indicated by the derivative with

respect to the zero mode σ3 = 0); in more neuroscientific terms: it shows the dependence of the susceptibility (the neuron’s linear response

strength to an input) on the baseline activity to linear order. Ŵ
(3)

X̃ X X,λ,fl.
(0, σ2, −σ2) in panel (c) is somewhat complementary: It is the lowest

order term describing the fluctuation-mediated effect of time-dependent deviations on the constant part of the mean activity. This term, for

example, quantifies the change of the constant baseline activity due to a small sinusoidal stimulus with frequency σ2; the linear order of

this response averages out over time, but the quadratic response does not. Note that Ŵ
(3)

X̃XX,λ,fl.
(0, σ2, −σ2) ∈ R because its Fourier transform

Ŵ
(3)
x̃xx,λ,fl.(0, t2,−t2) is real by definition and symmetric because the last two arguments are those of two x at different time points, which are

interchangeable.

corresponding propagators �x̃x, �xx. We then get two sets

of 12 diagrams each (compare Appendix A 10) the first of

which describing the flow of the two one-dimensional sec-

tions Ŵ
(3)
x̃xx,fl.(0, σ1,−σ1) (type 1) and the second one that of

Ŵ
(3)
x̃xx,fl.(σ1,−σ1, 0) (type 2). Every diagram consists of three

three-point interaction vertices that are either of type 1 or

of type 2. Thus, the common flow of the two sections is

computed consistently within this approximation.

Figure 4 compares the three point vertices obtained from

the truncated flow equation to the result from the BMW

approximation. The latter of course only yields the three-point

vertex Ŵ
(3)

X̃XX
(σ1, σ2, σ3) along the one-dimensional sections

−σ1 = σ2 + σ3 = 0 [type 1, Fig. 4(c)] and σ3 = 0 [type 2,

Fig. 4(b)]. The agreement between the two approximations

is high. This result is to be expected, since the fluctuation

corrections per se are small in the regime considered, so that

the bare vertices still constitute the largest contributions to any

fluctuation correction.

L. Analyzing bifurcations by effective potentials

A fundamental question when considering neuronal dy-

namics is the stability of the system and the global network

state that emerges if the system is left at rest. While in deter-

ministic systems such a consideration reduces to finding fixed

points, typically of a set of differential equations, in stochastic

systems the situation is more complicated due to the presence

of fluctuations. To determine the fluctuation corrections on the

stationary statistics of a stochastic system and to study the

stability of the found solutions, it is convenient to introduce

what is known as the effective potential.

In this section we introduce two different approaches and

apply them to the example of a bistable system. Limiting the

study to stationary solutions x̄∗ := x∗(t ) = const, such that

X (ω) = 2πδ(ω)x̄∗, we can use the OM effective action (7)

to define the effective potential

UOM(x̄∗) :=
1

T
ŴOM(x̄∗), (48)

with T being the total time during which we observe the

system. The effective potential inherits the property that sta-

tionary points correspond to the true mean value of the system

from the effective action. The effective potential further plays

the role of a rate function [111] that describes departures of

the temporal average from the ensemble average in the limit

of long observation times (see Ref. [112], Sec. III).
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(a) (b)

(c)

(d)

FIG. 5. Diverging fluctuations in an excitatory-inhibitory network. (a) Sketch of the network consisting of N = NE + NI neurons composed

of an excitatory (E) and an inhibitory (I) population. The connection probability is given by p and the synaptic weight by J (gJ) if the

presynaptic neuron belongs to the excitatory (inhibitory) population. Each neuron has a fixed outdegree of p N . Thus, the average recurrent

input weight to each neuron equals R = pJ (NE + gNI ). All neurons are driven by external white noise (ξ ) with zero mean and standard

deviation σ . Panels (b) to (d) show the simulation results of the population-averaged firing rate x̄(t ) = N−1
∑

i xi(t ) as a function of time

for three different values of r = 1 − R. (b) Network in the balanced state (r > 0) shows small fluctuations around a vanishing mean value.

(c) Close to the critical point (r = 0) the fluctuations increase considerably. (d) In the bistable regime (r < 0) the fluctuations decrease again

and are no longer centered around zero but around ±c, where c > 0. For the simulation we used rate neurons with a nonlinearity of the form

φ(x) = tanh(x). The other parameters are: NE = 800, NI = 200, J = N− 1
2 , p = 0.1, σ = 0.1. The simulations were performed with NEST

[113].

In tree-level approximation (12) and with (7) we have

UOM,0(x̄∗) = −
1

T
SOM(x̄∗)

=
1

2T D

∫ T

0

dt [− f
(
x̄∗)]2 =

1

2D
[ f
(
x̄∗)]2. (49)

For D > 0, its curvature at the minimum x̄∗ = x̄ equals the

inverse of the zero-frequency fluctuations 〈X (0)2〉 − 〈X (0)〉2

around the mean, which we deduce by using f (x̄) = 0 from

U ′′
OM,0(x̄) =

∂2

∂ x̄∗2
U0(x̄∗)|x̄ =

[ f ′(x̄)]2

D
, (50)

compared to the covariance (5) in linear response.

This relation holds beyond this lowest order approxima-

tion: The curvature of UOM at a stationary point is the inverse

of the zero frequency mode of the correlation, which follows

from Eq. (A28) at the end of Appendix A 5.

1. Computing the effective potential in the MSRDJ formalism

For systems in thermodynamic equilibrium, the determin-

istic force appearing in (2) can be written as f (x) = −V ′(x).

As a consequence, the stationary distribution obeys

p(x) ∝ exp

[
−

2

D
V (x)

]
. (51)

For such systems, de Dominicis has defined an effective

potential [81]

UDD[x̄∗] = V (x̄∗) + · · · (52)

[see Appendix A 11 i.p. Eq. (A46)]; here “· · · ” are fluctua-

tion corrections. For a typical network dynamics in multiple

dimensions, the deterministic force can usually not be written

in such a form. For example, if one considers a coupling term∑
j Ji jx j between neurons as in Eq. (1); only for a symmetric

matrix Ji j = J ji it is the derivative of the potential V (x) =
1
2

∑
i j xiJi jx j .

To illustrate the usefulness of these two approaches, the

de Dominics equilibrium effective potential (52) and the OM

form (48), we study the dynamics of an excitatory-inhibitory

network of rate neurons [Fig. 5(a)], which is a generalization

[114] of the classical model by Sompolinsky, Crisanti, and

Sommers [68]. The model is given by an N-dimensional

stochastic differential equation of the general form (1). It

describes the activity of NE excitatory and NI inhibitory

nonlinear neurons in a sparse random network with a fixed

number of outgoing connections p · N for each neuron. Here

p denotes the connection probability and N the number of

neurons. Nonzero connections Ji j take on the values J or gJ

depending on whether neuron j is excitatory or inhibitory,

with g < 0. We here choose φ = tanh, as in the original

work [68]. Focusing on the population-averaged activity
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(a) (b)

(c) (d)

FIG. 6. Critical point at the loss of balance. Dynamical equation (54) as a model of the population activity. (a) Stationary points of the

deterministic system (tree level, black) and the stochastic system (one-loop, blue) as a function of r = 1 − R. For r < 0, the fixed point x0 = 0

is unstable (dashed horizontal lines). Exact solution from Fokker-Planck equation (FP) in red. The dotted vertical lines denote the values of r

that are used in panels (c) and (d). (b) Zero-frequency variance 〈X (0)2〉 − 〈X (0)〉2 = U ′′
OM(x̄∗)−1 of the stochastic system as a function of r at

the stable stationary points determined from the curvature of the tree-level approximation (black) and one loop approximation (blue) of UOM.

The one-loop result for r > 0 is shown only for r > rc, where rc is the value of the leak term below which the one-loop corrections are greater

than the tree-level contributions (Ginzburg criterion; see Ref. [13], chap. 6.4), i.e., |Ŵ(2)
x̃x,fl.| > |r|. (c) Effective potentials UOM (56) and UDD

(57) in the broken symmetry phase [r = −0.31, left black dotted vertical line in panels (a) and (b)]. Tree-level approximation (UOM: black,

UDD: gray) and one-loop approximation of UOM (A47) (blue); one-loop approximation is expanded up to second order in δx = x∗ − x1
±, where

x1
± �= 0 is the one-loop stationary point of UOM shown in A (blue curve). (d) Same as panel (c), but in the symmetric phase [r = 0.22, right

black dotted vertical line in panels (a) and (b)]; one-loop result expanded in δx around x0 = 0. For all panels u = 0.2 and D = 0.05.

x(t ) = 1
N

∑
i xi(t ) only, (1) can be rewritten as

dx(t ) + x(t ) dt

=
1

N

∑

i

∑

j

Ji jφ[x j (t )] dt + dW (t )

= pJ




∑

j∈E

φ[x j (t )] + g
∑

j∈I

φ[x j (t )]



 dt + dW (t )

= pJ (NE + gNI )φ[x(t )] dt + O[δxi(t )]dt + dW (t ),

(53)

where dW (t ) = 1
N

∑
i Wi(t ) is the noise component

projected in the population direction (1, . . . , 1), and

δxi(t ) = xi(t ) − x(t ) is the deviation of each individual

neuron activity from the population average x(t ). The terms

O[δxi(t )] arise from a Taylor expansion of the nonlinearity φ

around x(t ). We notice that the population-averaged activity

is driven by fluctuations δxi(t ) of individual neurons and

external fluctuations dWi(t ). The former arise from the

recurrent processing of uncorrelated external inputs dWi(t )

via random connections Ji j . Numerical simulations show

that the variance of the population activity strongly depends

on the ratio R := pJ (NE + gNI ) between excitation and

inhibition in the network [Figs. 5(b)–5(d)]. In particular,

the size and timescale of fluctuations strongly increase for

R → 1 [Fig. 5(c)], the point where excitation and inhibition

in the network exactly balance the neuronal leak term on the

left side of (53). Moreover, for R > 1 we observe a nonzero

mean activity [Fig. 5(d)], even though the external input has

zero mean and the nonlinearity is point-symmetric. These

observations point towards a phase transition in the model.

A fully self-consistent treatment of the model including

the colored-noise fluctuations δxi of individual neurons is

possible. To this end the MSRDJ formalism needs to be

combined with a disorder average [43,68]. However, in order

to expose the phase transition elicited from the interplay of

general fluctuations on the right-hand side of (53) and the

ratio R between excitation and inhibition, it is sufficient to

only consider white noise fluctuations. Then the population

dynamics reduces to

dx(t ) + x(t ) dt = R φ[x(t )] dt + dW (t )

≈ R
[
x(t ) − 1

3
x3(t )

]
dt + dW (t ), (54)

where we expanded the nonlinearity φ(x) = tanh(x) ≈ x −
1
3

x3, which can be done for small external noise ampli-

tudes D defined as 〈dW (t )dW (s)〉 = D δt,sdt . Expression

(54) describes the stereotypical setting of a bistable system

(see “model A” in Ref. [5]) for which both the de Do-

minics equilibrium effective potential (52) and the OM form
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(48) are applicable to study phase transitions (Fig. 6). The

deterministic part can be written as the gradient of the poten-

tial V (x) = r
2
x2 + u

12
x4; the system is hence identical to fluc-

tuations around the equilibrium state of a Ginzburg-Landau

model (model A in Ref. [5]). In this analogy, the parameter

r = 1 − R plays the role of the reduced temperature—when

it vanishes, the system is at a critical point—and u = R is the

strength of the interaction. The fix points in the noiseless case

(D = 0) are

x0 := 0, x± := ±
√

−
3r

u
, for r < 0; u > 0, (55)

The trivial fix point x0 = 0 is stable as long as r > 0. As

r becomes negative, the two stable fixed points x± come

into existence. They move out of zero in a continuous man-

ner, the hallmark of a continuous phase transition, shown

in Fig. 6(a). So the system becomes bistable if the level of

recurrent positive feedback is high enough; namely, at R > 1,

the deterministic system shows a pitchfork bifurcation. This is

what happens in a network if excitation becomes dominant, so

that the balanced state [9] is destabilized and a pair of stable

states, one at high and another at low activity, appear [10].

Furthermore, one notices that the timescale of fluctuations

diverges if R → 1, r → 0, because the leak term in (54)

vanishes.

This analysis shows that the network at the point of balance

between excitatory and inhibitory coupling can be mapped

to the prototypical model of a continuous dynamics phase

transition, the time-dependent x4 theory (model A in Ref. [5]).

A difference between the original model A and the network

studied here is that the random connectivity leads to an effec-

tive, spatially homogeneous all-to-all coupling. As is known

from the general theory of critical phenomena, the divergence

of fluctuations often leads to considerable deviations from

the above mean-field analysis, for example, the mismatch of

critical exponents. In the following, we therefore illustrate

how to assess fluctuation corrections on the example of the

simplified dynamics (54).

In the stochastic system, the effective potential can be

used to investigate this continuous phase transition. The cor-

responding effective potential in tree-level approximation (49)

takes the form

UOM,0(x̄∗) =
1

2D
[V ′(x̄∗)]2

=
1

2D
(x̄∗)2

[
r +

u

3
(x̄∗)2

]2

, (56)

shown in Fig. 6(b). This effective potential differs from the

one constructed by de Dominicis. The latter with (A45) yields

UDD,0(x̄∗) = V (x̄∗) =
1

2
(x̄∗)2

[
r +

u

6
(x̄∗)2

]
, (57)

shown in Figs. 6(c) and 6(d) for r < 0 and r > 0, respectively.

However, the fixed points (55) are the stationary points of V

and thus of UDD. These are also stationary points of UOM. In

addition, UOM has the stationary solutions that are roots of

0 = V ′′(x̄∗) = r + u (x̄∗)2, namely, x̄∗′
± =

√
− r

u
(as minima).

These are the inflection points of V , which denote the points

at which the static theory (51) has a diverging propagator (see

also the discussion at the end of Sec. 6.4 in Ref. [13]).

The vicinity of the joint stationary points of UDD and UOM

can also be seen in the light of equal-time versus frequency-

zero fluctuations. The curvature of UDD and hence, to leading

order, of V —by (51)—is the inverse of the equal-time covari-

ance [ 2
D

U ′′
DD(x̄∗)]

−1 = 〈x(t )x(t )〉 − 〈x(t )〉〈x(t )〉. The curva-

ture of UOM at a stationary point yields—by (50) and (5)—the

covariance of the zero frequency fluctuations [U ′′
OM(x̄∗)]

−1 =
〈X (0)2〉 − 〈X (0)〉2. These two relations show that points of

vanishing curvature in both cases (56) and (57) signify the

divergence of fluctuations, hence a critical point. In the current

example, both effective potentials show that such a fluctuation

infinity at the fixed point x̄∗ = 0 appears if r = 0; at the

point where the network dynamics changes from inhibition

dominance (r > 0) to excitation dominance (r < 0), shown in

Fig. 6(b).

Computing the effective potential in one-loop approxima-

tion [see Appendix A 12, Eq. (A47)], the divergence of the

fluctuations appears at smaller r < 0, whereas for positive r

fluctuations are reduced compared to the tree-level approx-

imation. In this example we see a considerable correction

caused by the fluctuations. Thus, the point where balance is

lost, the transition temperature rc, is shifted towards smaller

r, similar to the Ginzburg-Landau model where fluctuation

corrections reduce the critical value rc. There the one-loop

corrections to the variance, shown in Fig. 6(b), also are

considerable.

The one-loop corrections to the effective potential diverge

as r → 0, as expected at a continuous phase transition. The

solution to the equation of state disappears already far above

r = 0, as shown in Fig. 6(a). This shows that the behavior of

the system close to r ≃ 0 is indeed strongly fluctuation-driven

and qualitatively different from the simple bifurcation in its

deterministic counterpart, the tree-level approximation. This

simple example illustrates that deterministic and stochastic

models of neuronal activity may show qualitatively quite

different behavior in particular at such critical points. The

details of the calculations for this model are presented in

Appendix A 12.
For r < 0 the system thus possesses two degenerate so-

lutions. If the external drive j̃ to the system is varied, we
observe a first-order phase transition: as j̃ crosses zero, the
mean jumps over from one local minimum of U to the other.
The true UOM inherits the convexity of ŴOM, and should hence
have a flat segment between the two local minima in Fig. 6(c).
The nonconvexity of the approximations (56) and (57) is an
artifact of the simple approximation used here; in particular
whether there is a local minimum in UDD or a local maximum
in UOM as x̄∗ = 0 is inconsequential; both would be replaced
by a straight line in the convex envelope of U ; the latter is
obtained because W , computed as the Legendre transform of
the (nonconvex) approximation of ŴOM/DD, has different left-
and right-sided derivatives. Transforming back one obtains a
convex approximation of Ŵ and hence U (see Appendix A 3
for a detailed discussion of convexity and differentiability
of W ).

Note also that on a global scale, the identification of UOM

with an energy landscape is not possible, because it assumes

stationarity and is therefore only valid near a stable fixed

point. As a consequence, the maxima of UOM do not indicate

borders of the basin of attraction of this stable fixpoint,
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contrary to what would be expected for an energy. Moreover,

unstable fixed points of the system will show up as minima of

UOM, as is obvious from the tree-level approximation (12) that

is positive semidefinite and vanishes whenever f (x∗) = 0.

III. DISCUSSION

This article surveys methods to obtain self-consistent ap-

proximations by functional and diagrammatic techniques for

stochastic differential equations as they appear in models of

neuronal networks. Besides a systematic introduction, going

from simple to more complex methods, we present three main

new findings.

First, we expose the fundamental relation between the

Onsager-Machlup (OM) effective action, which has a di-

rect physical and probabilistic interpretation, and the Martin-

Siggia-Rose-de Dominicis-Janssen (MSRDJ) effective action,

which is computationally favorable. The general exposition of

this fundamental link, to our knowledge, has been missing in

the literature; it has earlier surfaced in specific problems in

certain approximations [89]. In particular, the derivation of the

OM effective action from the corresponding MSRDJ effective

action naturally extends the definition of the former beyond

Gaussian noise. The OM effective action in addition allows

the analysis of bifurcations in stochastic systems. These can

be studied conveniently by help of the corresponding effective

potential, which exposes whether the stochastic system makes

a first-order phase transition or a continuous phase transition

and which allows the assessment of fluctuations at the transi-

tion. We show for the neuroscientifically important example

of the balanced state [9], that the loss of balance, which in

the deterministic system causes a pitchfork bifurcation, in

the stochastic system becomes a continuous phase transition

dominated by fluctuations. We also expose the relation to the

de Dominicis effective potential [81] in equilibrium systems.

Second, we derive two effective equations that are equiv-

alent to the stochastic nonlinear system. The first is a deter-

ministic integro-differential equation that captures the time

evolution of the mean of the process. A related equation has

previously been derived within the Doi-Peliti formalism of

Markovian dynamics [45]. The second is a stochastic, but

linear integro-differential equation that has identical second-

order statistics as the full system. These effective equations

serve us here to provide an intuitive interpretation of the

meaning of various vertex functions and to show how to

relate stochastic nonlinear models to effective deterministic

or stochastic linear systems.

Third, we develop a truncation scheme for the hierarchy

of flow equations that arises in the functional renormalization

group, which is based on the BMW scheme [54]. We here

transfer this method from the derivative expansion to the

vertex expansion, and demonstrate that this scheme yields a

closed set of flow equations for the vertex functions which

accurately captures the statistics of the system. The presented

scheme is generic and may therefore be employed beyond the

application to neuronal dynamics.

The link between the OM and the MSRDJ formalism also

allows us to comment on a set of more subtle points. We

carefully consider the convexity of the cumulant-generating

functional W and discuss physically relevant cases in which

W becomes nondifferentiable as a result of degeneracy, for

example, by spontaneous symmetry breaking as it appears

in attractor networks or in networks that show bistability:

the existence of a convex set of solutions to the equation

of state. The relation to the OM effective action enables us

to address the question whether the effective action in the

MSRDJ formalism is well defined. To our knowledge, this

is still an open question (see also Ref. [26]). The work by

Andersen [82] presents a mathematically rigorous version of

the MSR operator formalism [39] and concludes that there are

cases where the Legendre transform cannot be applied. The

problem in defining a Legendre transform for both sources j

and j̃ at once is their mutual dependence. This necessitates

Andersen [82] to consider an ensemble of paths with an

initial period of trivial dynamics (see i.p. his Sec. V and his

Appendix D). In the path-integral formulation that we follow

here, albeit not mathematically rigorous in a strict sense, we

are able to address the problem from another view point.

We separate the Legendre transform into two steps. The first,

which can rigorously be done thanks to the convexity of W

in j, and a second, which is in fact only needed formally:

we show that the solutions of the equation of state obtained

from the MSRDJ formalism fulfill the requirement 〈x〉 = x∗,

as requested by the well-defined OM effective action. What

hence remains open is to show that all solutions of the OM

equation of state also solve the the MSRDJ equation of state.

The model systems studied in the current manuscript are

intentionally left simple to illustrate the techniques in a min-

imal setting. In the following we therefore provide a slightly

wider outlook for potential applications that are of relevance

to the study of neuronal networks.

The initial part of this paper reformulates the problem of

finding self-consistency equations by help of the effective

action. We here apply the standard approach known from

quantum field theory and statistical physics [79]. This tech-

nique yields self-consistent equations for the mean of the

process that incorporate fluctuation corrections. Applications

to neuronal networks include the study of bifurcations in

the network dynamics, as we demonstrate here. Pitchfork

bifurcations, for example, are responsible for the occurrence

of multistability, the basis of classical attractor networks [12].

The effective action allows us to transfer the concept of a

bifurcation in a deterministic differential equation [115] to

a stochastic system: We need to investigate the bifurcations

of the stationary points of the effective action, instead of

studying the differential equation itself. A pitchfork bifurca-

tion, the transition from a regime with a unique solution to

one with multiple fixed points, corresponds in the stochastic

system to a critical point; the effective action changes from

having a single minimum to exhibiting a flat segment that,

beyond the bifurcation point, admits a continuum of stationary

states. Traversing the bifurcation point, the curvature vanishes

and hence fluctuations diverge. We here showed that the OM

effective action clearly exposes this fundamental property in

the example of a network at the point where feedback changes

from dominance of inhibition to dominance of excitation.

Beyond the transition point, the system may be brought to

jump from one end of the plateau to the other—showing a

first-order phase transition as an external parameter is varied;

the network is bistable.
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The study of transitions to oscillatory states, as they are

ubiquitously observed in neuronal systems [116], would re-

quire the computation of the effective action as a functional

of a field with Fourier components at nonzero frequencies.

If the stationary point of the functional is assumed at a

constant field configuration at one side of the bifurcation

and by an oscillatory state on the other side, we have the

stochastic analog of a Hopf bifurcation. These bifurcations

play a central role for the generation of oscillations [61]

and for the appearance of spatiotemporal waves which are

observed in cortical networks [117–119]. The formalism ex-

posed here makes the influence of noise on such bifurcations

accessible. For example, the recently found phase transition

at the onset of an oscillatory state [49] could be analyzed

within this framework. Bifurcations in neuronal networks in

the presence of symmetries can be studied by means of the

equivariant branching lemma [120]. So far these techniques

neglect the influence of the noise altogether (i.e., employ the

tree-level approximation), and therefore their applicability is

limited to network states with weak noise. The formulation of

bifurcations in terms of the effective action would allow an

extension of this method to study how symmetries constrain

bifurcations between fluctuation-dominated states.

A closely related point is the transition between multiple

stable states, such as up- and downstates [121,122] or the dif-

ferent states of an attractor network [12]. The average noise-

driven paths of transitions between such metastable states

allows the assessment of the statistics of transitions between

multiple states, for example to quantify the vulnerability to

noise of information encoded in the activation of an attractor.

Technically, one here seeks escape solutions to the equation

of state which have nonvanishing values for the response field

x̃ [78,123] (see also Ref. [77], i.p. chap. 10 for a review). In

the setting of given initial value and free endpoint (relaxation),

however, we can use that x̃ = 0 and we can limit ourselves to

small deviations δx of the physical variable. This enables the

computation of the effective equation of motion for the mean

value as a Taylor expansion of the equation of state. The theo-

retical prediction agrees with the simulation reasonably well.

A related approach was here used to provide an approximation

for the effective potential: if the approximation of the MSRDJ

effective action is quadratic in the response field, extremizing

x̃ is equivalent to integrating out the response field to obtain

the OM effective action. This technique has an advantage

over the computation of Ŵ[x, x̃] for arbitrary values of x̃ �= 0,

because in the latter case closed response loops do not vanish,

neither do the propagators �x̃x̃, thus proliferating the number

of diagrams to compute.

The loop expansion is shortly reviewed here, because it

provides qualitative insights into the leading order of the

fluctuation corrections. In the context of neuronal networks,

the seminal work by Buice and Cowan [84] has introduced

this technique to the study of neuronal networks. Since the

structure of the one-loop diagrams is identical to those that

appear in the functional renormalization group, one may use

this method to check which additional vertices are produced

along the RG flow, thus providing information for a good

ansatz for the effective action. We here show that the loop

expansion for the considered example is an expansion ∝ β2D,

where D is the amplitude of the noise and β the prefactor of

the nonlinearity. In our example, fluctuations are small so that

the one-loop result is already quite accurate. The sign of the

fluctuation corrections together with the form of the effective

equations for the mean and for the second-order fluctuations,

moreover expose qualitative mechanisms that arise from the

fluctuation corrections: we show that a convex nonlinearity

always causes a positive shift of the mean of the process

and that the additional linear memory kernel that arises from

the self-energy has a sign that diminishes the leak term, thus

causing a slower relaxation of the system; the interplay of

noise and nonlinearity thus prolongs the memory of a stimulus

within the system. For small deflections from the steady

state, this indirect contribution, moreover, typically dominates

over the effect of the nonlinearity per se. Nevertheless, many

studies of neuronal networks neglect this feedback, and keep

the nonlinear terms at their mean-field level. This approach

has been shown to yield good results [see Ref. [48], Eq. (6)

and [124], Eq. (3.8)] if fluctuations are not too strong. This is

in line with our results provided that the noise level is low,

because the linear memory kernel scales with Dβ2, as can

be seen in (32). Therefore for Dβ2 ≪ 1, while β = O(1), it

might indeed be sufficient to consider the deterministic effect

of the nonlinearity, but not the interaction with the noise.

However, for Dβ2 = O(1) while β ≪ 1, the nonlinear effects

by themselves are negligible, but their interaction with the

noise induces a significant memory term. Setting β exactly

to zero obviously makes both effects vanish, which for very

noisy environments might lead to the erroneous conclusion

that the nonlinearity without the noise is the reason for the

deviation from the linear case. For large times especially, the

linear noise-mediated component due to its “memory” wins

over the deterministic nonlinear part. Correspondingly we

show that the power spectrum at low frequencies is enhanced.

Convex nonlinearities of the gain functions of neurons, that

are required for these qualitative features to hold, are typical

in regimes in which neurons are driven by fluctuations [125].

Networks with disordered connectivity, where connections

are drawn randomly, are commonly treated in mean-field

approximation [68,125,126]. The loop expansion is a princi-

pled way to go beyond this lowest order approximation. The

approximation is typically performed with help of auxiliary

fields, the physical meaning of which is the time-lagged

autocorrelation function of the input to a neuron [see, e.g.,

Ref. [43], Appendix A, Eq. (A6)]. Constructing the effective

action in these fields allows the systematic computation of

fluctuation corrections to the mean-field solution [see, e.g.,

Ref. [43], Appendix A, Eq. (A8)].

The functional renormalization group (fRG) approach is

presented here in the context of neuronal dynamics as a

method that overcomes the limitations of the loop expansion

with regard to self-consistency that is restricted to the mean.

Instead, all vertex functions are potentially renormalized by

fluctuation corrections, thus in principle allowing a fully self-

consistent treatment also including corrections to the prop-

agators and the interaction vertices. In the regime of weak

fluctuations, we show that the results are slightly superior to

the one-loop approximation, but here do not yield qualitatively

new results. Computing higher order loop approximations

is, moreover, inherently difficult, whereas all integrals in

the fRG approach always have one-loop structure. The fRG
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approach, however, leads to improved results over the one-

loop approximation even though the frequency resolution of

higher order vertices is limited by the adapted BMW ap-

proximation introduced here. Given in addition that similar

ansätze have been successfully applied to spatially extended

systems like the KPZ model [51], we believe that the insights

gained by this work will prove useful in studying neuronal

networks embedded in space. Here also more sophisticated

approaches might become useful, for example, the decompo-

sition of vertices in so-called channels, characterized by the

way they can be separated into two pieces by cutting two lines

(particle-particle, particle-hole, and crossed particle-hole in

solid-state physics terms). For a momentum-independent bare

interaction, the contribution of each channel has a character-

istic momentum structure, which can be used to drastically

reduce the numerical effort both in fRG [127,128] and parquet

calculations [129].

From a conceptual point of view, the functional renormal-

ization group is interesting, because the flow generates new in-

teraction vertices that are not contained in the original model.

Thus, this method shows how the description of a neuronal

network changes as fluctuations are integrated out: It exposes

which effective interactions are generated. A specific feature

of a flat regulator in frequency domain is its direct physical

interpretation as a leak term of the neuronal dynamics. It con-

trols the relaxation rate. Each point along the renormalization

group flow therefore corresponds to a physical system with a

different neuronal timescale. This insight may be used to study

the approach towards a critical point at which the leak term

vanishes and the timescale of fluctuations diverges. A more

general discussion of frequency-dependent regulators can be

found in Duclut and Delamotte [106].

This view is complementary to the typical application

of an RG analysis, where mostly a momentum-dependent

regulator is used so that the short-ranged degrees of freedom

are subsequently integrated out. A rescaling of the momenta

then yields identical momentum ranges before and after this

marginalization, so that fixed points may occur (see, e.g.,

Ref. [130], i.p. “The Scaling Form of the RG Equation of

the Dimensionless Potential”). In this view, each point on the

RG trajectory represents the same system, just described at a

different level of coarse graining.

Despite its simplicity, the here-considered model exposes

two fundamental properties: First, the fluctuation corrections

to the self-energy Ŵ
(2)
x̃x,fl. shift the point of transition with regard

to mean-field theory. The latter predicts criticality at the point

of vanishing leak term m = 0. The self-energy corrections

reduce the leak term, thus promoting critical fluctuations. The

critical point is therefore reached already at a nonzero negative

value mc < 0 of the leak term. Qualitatively, the behavior of

the self-energy corrections is therefore opposite to the best

known text book model of criticality, the ϕ4 theory, where the

transition is delayed to a negative mass term [e.g., Ref. [13],

Eq. (6.26)]. In addition, a second mechanism causes a shift of

the transition point, which is absent in an even theory as the ϕ4

model: Fluctuation corrections to the mean value increase the

mean value x̄. Thus, the effective leak term m(x̄) is weakened,

further promoting the approach to the critical point.

These generic observations only depend on the assumption

of an expansive nonlinear neuronal gain function, so that we

expect qualitatively similar results for example in a (fully or

densely connected) network. The shift of the transition point

obviously depends on the amplitude of the noise. It is known

that fluctuations vary in neuronal networks in response to

stimuli [131,132]. Thus, neuronal systems may dynamically

change their distance to the critical point within short periods

of time.

A particularly interesting feature of the approach to the

critical point are trajectories that depart from the stationary

mean towards the location of the second, unstable, fixed point.

Their dynamics slows down not only due to the reduced

leak term by the two mechanisms described above, but also

due to passing the vicinity of the second, unstable fixed

point. In neuronal systems this mechanism may be useful to

generate transient behavior on slow timescales, beyond the

slow down of fluctuations close to the stable fixed point. One

may speculate if such mechanisms play a role in long transient

behavior observed in delayed response tasks [133].

Recently a Ginzburg-Landau type theory of neuronal activ-

ity has been formulated by Di Santo et al. [49]. A bit earlier,

Henningson and Illes [134] succeeded in fitting a simpler,

linear model—a leaky heat equation with additional Gaussian

noise—to the recordings of subthreshold fluctuations in acute

hippocampal brain slices from rat. Such models, expressed

as partial stochastic differential equations, naturally fall into

the realm of the statistical field theoretical methods discussed

here. In particular the study of second-order phase transitions

has come into reach now, either by employing the established

formalism of statistical field theory based on Wilson’s renor-

malization group for nonequilibrium stochastic dynamics (see

Ref. [5] for an authoritative review) or by the functional

renormalization group methods presented here. Whether or

not nontrivial fixed points in neuronal networks are accessible

by former methods that rely on the closeness of the fixed

point to a Gaussian one is so far unclear. The closely related

Kardar-Parisi-Zhang model [50], for example, exhibits fixed

points in the strong coupling regime, which is therefore only

accessible by nonperturbative methods, for example, the fRG

approach presented here [135].

The currently employed theory of second-order phase tran-

sitions in neuronal networks follows two main themes. The

first employs dynamic models like branching processes. It is

determined by the branching parameter, the average number

of downstream descendants produced by the current activity

[136,137]. It relates second-order phase transitions to the

transition originally studied in the sandpile model [138]. In

a similar spirit, Buice and Cowan [84] have introduced a

network of neurons, which can be either active, quiescent, or

refractory and are described by a master equation. This model

also shows a dynamic phase transition, so this is part of the

first theme. In the second theme, experimentally measured ac-

tivity is compared to equilibrium ensembles, such as pairwise

maximum entropy models [88,139]; the discrepancy between

the nonequilibrium dynamics of neuronal networks and this

latter approach based on equilibrium thermodynamics has

been identified as a pressing problem [33]. Following a field

theoretical approach would in particular allow the study of

critical exponents in models where neuronal activity unfolds

in a spatially extended field, representing a coarse-grained

view on the activity of mesoscopic numbers of neurons
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at each space point. Thus it would enable experimental pre-

dictions, for example with regard to the spatial structure

of correlated activity. For the Manna sandpile model [140]

such a continuous theory has been formulated and it has

been found to belong to the universality class of directed

percolation with a conserved quantity (C-DP) [141–144]; the

conservation of the number of sand grains here gives rise to

the conserved quantity. Belonging to the C-DP universality

class, the Manna sandpile model in particular features an

absorbing state. Also the three-state neural dynamics by Buice

and Cowan can be shown to belong to the C-DP universality

class [84]. Therefore, this model has an absorbing state, too. In

neuronal networks, though, we typically see ongoing activity;

the absence of an absorbing state would therefore give rise

to a different structure of the effective field theory, possibly

also affecting the universality class. An alternative approach

is therefore to start at the biophysics of neuronal networks on

the microscopic level and to derive the structure of an effective

long-range field theory. Investigating such models, the func-

tional renormalization group has proven one of the few tools

that make nonperturbative RG fixed points accessible [52].

So far field theoretical methods have been applied to

neuronal networks with Markovian dynamics on discrete

state spaces [46,84], employing the Doi-Peliti [85] formal-

ism or the alternative approach by Biroli et al. [65,66],

which is closer to the MSRDJ formulation used here. Also

neuronal dynamics described by stochastic differential equa-

tions [7,8,37,43,145,146] and stochastically spiking models

(nonlinear Hawkes processes [147,148]) have recently been

formulated by field theoretical methods [11]. For quadratic

integrate-and-fire models in the mean driven regime, a map-

ping to a coupled set of phase oscillators, moreover, allows

the application of the MSRDJ formalism [47,149]. The renor-

malization group methods that we presented here can directly

be applied to these systems.

Networks of leaky integrate-and-fire models [150] in the

fluctuation driven, asynchronous irregular state [10,125] are,

however, inherently complicated to treat by field theoretical

methods; the reason is that an action for such models is

cumbersome to define due to the hard threshold and reset

of the membrane potential. This model and its biophysically

more realistic extensions [96], however, form a kind of gold

standard. It would therefore be a major step to treat networks

of such models by systematic approaches as they are offered

by field theory. So far methods for this central model are

constrained to ad hoc mean-field approximations, typically

resting on the annealed approximation of the connectivity

[10,151]; in particular this mean-field based approach pro-

hibits a systematic study of critical phenomena.

In summary, the current work imports methods from es-

tablished fields of physics into the field of theoretical neu-

roscience that we think have a high potential to solve some

of the technical difficulties that arise in the study of neuronal

networks in the presence of fluctuations, nonlinearities, phase

transitions, and critical phenomena.
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APPENDIX

1. Normalization and escape

It is often stated that in stationary settings all moments of

the response field vanish (Refs. [[83], p. 38] and [153]). This

statement follows from the normalization of the probability

functional p[x| j̃] for all paths,
∫
Dx p[x| j̃] = 1. The latter is

given by

p[x| j̃] =
∫

Dx̃ exp(S[x, x̃] + j̃Tx̃). (A1)

The normalization can therefore also be written as Z[0, j̃] ≡
1, which, upon n-fold differentiation by j̃, yields

〈x̃(t1) · · · x̃(tn)〉 ≡ 0 ∀t1, . . . , tn, n. (A2)

Note, however, that this holds only for paths for which either

the endpoint or the starting point is given. Fixing both, as is

done for escape problems (see, e.g., Ref. [77], chap. 10), effec-

tively leads to an additional term in the action and therefore to

nonzero moments of powers of the response field: specifying

the end point of the path, we implicitly restrict the ensemble

of paths in the integral appearing in Z . In the path-integral

formulation, we include the initial point x0 and the final point

xT as

Z[ j, j̃] =
∫

Dx

∫
Dx̃ exp(S[x, x̃] − x̃Tδ(◦) x0

+ jTx + j̃Tx̃) δ(x(T ) − xT ).

The presence of the initial condition x0 obviously does not

affect the normalization; it can as well be absorbed into a shift

of j̃ → j̃ − δ(◦)x0. Fixing the final condition xT , however,

leads to the relation

Z[0, j̃] = p(x(T ) = xT |x0, j̃),

which is the conditional probability to reach the final point

xT from the initial point x0 given the inhomogeneity j̃. This

probability is not necessarily independent of j̃, so that in

general nonzero moments (A2) appear.
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2. General properties of the effective action

in the MSRDJ formalism

Multiple derivatives of Ŵ with respect to x only are always

zero, as we will demonstrate in this section. We have just seen

that if we do not specify an endpoint for x, the expectation

value of all powers of x̃ vanish. As a consequence, we see from

(23) that Ŵ(2)
xx [x∗, 0] = 0. Extending our analysis to higher

order derivatives of Ŵ not involving x̃, we observe that

Ŵ(3)
x1x2x3

=
∑

y∈{x,x̃}

∑

y1,y2,y3

Ŵ(2)
x1y1

Ŵ(2)
x2y2

Ŵ(2)
x3y3

Wy1,y2,y3

Ŵ(2)
xx =0= −

∑

x̃1,x̃2,x̃3

Ŵ
(2)
x1 x̃1

Ŵ
(2)
x2 x̃2

Ŵ
(2)
x3 x̃3

W
(3)

x̃1,x̃2,x̃3︸ ︷︷ ︸
=0

= 0. (A3)

Similarly, we can argue for all higher order vertices: they can

be decomposed into “tree diagrams” with derivatives of W

as nodes and Ŵ(2) as connecting elements. A tree diagram

is defined by having the property to not include loops, and

especially, that means that two nodes are connected by at most

one element Ŵ(2). Because we have only x at the external

legs and Ŵ(2)
xx = 0, we have all W (n) connected to external

legs to be with respect to j̃. Therefore, the only possibility to

“justify” j derivatives are Ŵ
(2)
xx̃ -components acting as internal

connecting elements providing one j derivative each. Since

the graphs are treelike, we have exactly one W (n) node more

than connecting elements. However, we need at least one j

derivative at every node to prevent that it vanishes. We deduce

that the contribution of at least one of the nodes is zero. This

demonstrates that

Ŵ
(n)
x, . . . , x︸ ︷︷ ︸

n times

= 0 ∀n.

3. Convexity and spontaneous symmetry breaking

Cumulant-generating functions are convex. This can be

seen from the Hoelder inequality that holds for two non-

negative sequences gk, hk � 0 with α + β = 1 and 0 �

α, β � 1

∑

k

(gk )α (hk )β �

(
∑

k

gk

)α(∑

k

hk

)β

(A4)

and from the fact that probabilities are positive, so that one can

always define an “action” as the log probability p(x) =: eS(x)

(we here omit the normalization by the partition function for

brevity that would read p(x) = eS(x)−lnZ ). We here follow a

modified version of the argument in Ref. [154]; a similar

proof can be found in Ref. [112]. Applied to the moment-

generating function Z ( j) = 〈e jTx〉 one gets with a generaliza-

tion of Hoelder’s inequality for infinite-dimensional spaces

Z (α j1 + β j2) = 〈e(α j1+β j2 ) x〉 =
∫

x

e(α j1+β j2 ) x+S(x)

α+β=1=
∫

x

eα(S(x)+ jT
1 x) eβ(S(x)+ jT

2 x)

=
∫

x

(
eS(x)+ jT

1 x
)α (

eS(x)+ jT
2 x
)β

Hoelder

�

(∫

x

eS(x)+ jT
1 x

)α (∫

y

eS(y)+ jT
2 y

)β

= Z ( j1)α Z ( j2)β . (A5)

So consequently the cumulant-generating function W = ln Z

W (α j1 + β j2) � α W ( j1) + β W ( j2) (A6)

has a graph that is always below its chord; it is convex down.

In the case that W ( j) is differentiable, this means that

its Hessian is positive definite (a corresponding short proof

can be found in Ref. [[4], p. 166]). The definition of the

effective action by the Legendre-Fenchel transform instead

of the ordinary Legendre transform is only required if W is

nonanalytic; if it has a cusp at a certain value j∗. Such a

cusp corresponds to the situation of spontaneous symmetry

breaking: the mean value that is conjugate to j is different if

j∗ is approached from above or below:

〈x+〉 : = lim
jց j∗

W (1)( j)

�= lim
jր j∗

W (1)( j)

=: 〈x−〉.

The authoritative book by Vasiliev contains a more detailed

discussion of the role of Legendre transforms in the study of

phase transitions (see Ref. [79], i.p. Sec. 6).

The Legendre transform L of any function f ( j) is convex

down. This is because for

g(x) := sup
j

jTx − f ( j)

we find with α + β = 1 that

g(αxa + βxb) = sup
j

jT(αxa + βxb) − (α + β ) f ( j)

� sup
ja

α
[

jT
a xa − f ( ja)

]
+ sup

jb

β
[

jT
b xb − f ( jb)

]

= α g(xa) + β g(xb), (A7)

which shows that g is convex down. Convexity of f is not

required here. This general result holds in particular for the

effective action defined as

Ŵ
(
x∗) := sup

j

jTx∗ − W ( j), (A8)

which therefore is convex down, too.

Furthermore, the Legendre transform is an involution on

convex functions; applied twice we come back to the original

function. However, in the case that the original function

was not convex, the result would be the convex envelope

of the original function (see, e.g., Ref. [111] i.p. Fig. 9 and

surrounding text). So far, this issue cannot arise if we were

able to compute Ŵ or W exactly; both functions are convex

and therefore are the Legendre transforms of one another.

Moreover, Ŵ(x∗) for a typical physical system is in addition

differentiable everywhere. For if it had a cusp, this would

mean that W ( j) has a flat segment; the value of the source

j would not affect the mean 〈x〉 for values within this seg-

ment and all fluctuations would vanish, an untypical behavior

(thinking of j being the external magnetic field and 〈x〉 the
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magnetization): so even if W is nonanalytic in some point jc,

its Legendre transform is analytic.

An issue arises when approximations are made. We will

illustrate the point with help of the simplest tree-level ap-

proximation, the loopwise approximation to lowest order. The

approximation of the effective action then is

Ŵ0(x∗) = −S(x∗),

which is not necessarily convex; let us think of the action

S(x) = − 1
2
x2 + 1

4
x4, for example, which has two minima at

x∗
± = ±1 and an intermediate local maximum at x = 0, clearly

a nonconvex function, which is meant to approximate the

convex function Ŵ. Legendre-transforming this approximation

to W0( j) = L{Ŵ0}( j) = L{−S}( j) yields a function in j with

a cusp at j∗ = 0, because the supremum operation in W ( j) =
supx j x + S(x) for j < 0 finds the supremum at x � −1, and

for j > 0 finds the supremum at x � 1. As j moves through

zero from below, the point of the supremum thus jumps from

x = −1 to x = +1. Since the position of the supremum is the

left-sided (for j < 0) or the right-sided (for j > 0) slope of

W ( j), the latter function has a cusp at zero

〈x±〉 ≡ W (1)(0±) = ±1. (A9)

We may perform the Legendre transform explicitly by find-

ing the supremum as the solution to ∂x(S(x) + j x) = 0 for

x ∈ (−∞,−1] for j < 0 and within x ∈ [1,∞) for j > 0.

Transforming back to Ŵ∗
0 := L{W0}, we obtain the convex

envelope of the original Ŵ0: The two minima at x∗
± = ±1 are

joined by a straight line. This follows directly from the cusp of

W in (A9), because computing Ŵ∗
0 (x∗) = sup j j x − W ( j) for

x∗ ∈ (−1, 1) always assumes the supremum for j at j = 0; so

the resulting function Ŵ∗ is flat on this segment, the value of

which is W (0). These relations are easiest appreciated graph-

ically. A detailed explanation including graphical illustrations

can for example be found in Ref. [[111], i.p. Fig 9].

The fRG, in particular in its implementation with the

derivative expansion, has the interesting property that the

resulting partial differential equation for the effective action

(or effective potential, the effective action at vanishing Fourier

mode k) becomes convex as the flow parameter evolves (see,

e.g., Ref. [130], i.p. Fig. 2.15 and related discussion). This is

in contrast to simpler approximation schemes, such as the loop

expansion, as we have illustrated above on its lowest order ap-

proximation. Still, as more loop corrections are incorporated,

the plateau becomes successively flatter.

4. Convexity of the MSRDJ cumulant-generating functional

In the form (10), W [ j] is a cumulant generating functional

of the field x and thus, by Eq. (A6), a convex functional in j.

We can therefore perform the Legendre transform with regard

to j to obtain the effective action

Ŵ1[x∗, j̃] := sup
j

jTx∗ − WMSRDJ[ j, j̃] (A10)

as in Eq. (A8) only that we left j̃ as a parameter indicating

some additional input. By the convexity of W in j it is assured

that the mapping between x∗ and j is one-to-one and the

Legendre transform with regard to j is involutive.

a. Necessity of the Legendre-Fenchel transform

Let us first show that the cumulant-generating functional

W [ j, j̃] indeed may have nonanalytical behavior that requires

the use of the Legendre-Fenchel transform rather than the

ordinary Legendre transform; this happens, for example, in a

bistable system. For concreteness, let us assume the stochastic

differential equation of the form

dx(t ) = −V ′(x) dt + dW (t ) (A11)

with V (x) = − 1
2
x2 + 1

4
x4 and initial condition x(0) = 0 on

the local maximum of V . For j̃ = 0 depending on the realiza-

tion of the noise dW , the system will move close to either of

the two minima x± = ±1 of the potential V ; for sufficiently

small noise, the system will stay close to the spontaneously

chosen minimum for prolonged times.

We first consider the analytical properties of W in j at j̃ =
0. The presence of the source term

∫ T

0
j(t )x(t ) dt for j = ǫ

assigns a different probability to the paths x(t ) = x±, namely,

p[x(t ) = x+ = 1]/p[x(t ) = x− = −1] = e2ǫT . (A12)

So in the T → ∞ limit, a nonzero source j suppresses ei-

ther of these symmetric solutions in the integration measure.

Here time T plays a similar role as system size for sponta-

neous symmetry breaking in static thermodynamics (see, e.g.,

Ref. [154], i.p. Sec. 2.9). Therefore,

lim
T →∞

1

T

∫ T

0

〈x(t )〉± dt

=
1

T
lim
ǫց0

1

±ǫ
{W [ j(t ) = ±ǫ, 0] − W [0, 0]} ≃ ±1

yields a different left and right-sided derivative and hence

mean value. So indeed one needs a Legendre-Fenchel trans-

form to define Ŵ1 as in (A10).

b. Differentiability of Ŵ1 in j̃

We now consider the dependence of Ŵ1 on the source

j̃ �= 0. Such a nonzero source term corresponds to an inho-

mogeneity on the right-hand side of Eq. (A11)

dx(t ) = −V ′(x) dt + dW (t ) − j̃

= −[V (x) + j̃x]′ dt + dW (t ). (A13)

In a system in thermodynamic equilibrium, we may write the

stationary probability distribution of Eq. (A11) as

p(x(t )) ∝ exp

{
−

2

D
V [x(t )] −

2

D
j̃ x(t )

}
. (A14)

The additional inhomogeneity − j̃ in (A13) can therefore

be regarded as a modified source term ( j(t ) − 2
D

j̃)x(t ). We

therefore have

W [ j, j̃] = ln

∫
Dx exp

{
· · · +

∫ [
j(t ) −

2

D
j̃

]
x(t ) dt

}
.

The Legendre transform with regard to j eliminates the non-

differentiability in j̃. This is because the left- and right-sided
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derivatives are identical, as both limits

∂Ŵ1[x∗; ±ǫ]

∂ǫ
= lim

ǫց0

1

±ǫ

{
sup

j

jTx∗ − W [ j,±ǫ] −
(

sup
k

kTx∗ − W [k, 0]
)
}

= lim
ǫց0

1

±ǫ





sup
j

jTx∗ − W

[
j ∓

2

D
ǫ

︸ ︷︷ ︸
ĵ

, 0

]
−
(

sup
k

kTx∗ − W [k, 0]
)





= lim
ǫց0

1

±ǫ

{
sup

ĵ

(
ĵ ±

2

D
ǫ

)T

x∗ − W [ ĵ, 0] −
(

sup
k

kTx∗ − W [k, 0]
)
}

= lim
ǫց0

1

±ǫ

(
±ǫT 2

D
x∗
)

=
2

D
x∗

exist for nonzero D and are identical. We here used that a one-dimensional dynamics can always be considered as following an

equilibrium distribution of the form (A14). For systems for which the right-hand side is not given by the gradient of a potential

[in contrast to Eq. (A13)], it is less clear that the Legendre transform with respect to j is differentiable with respect to j̃. However,

it is plausible that the effective action depends smoothly on the input − j̃.

In the case of a nonequilibrium system, we assume that we have a cumulant-generating functional with potentially a

nonanalytical cusp at jc; since left- and right-sided derivatives are equal almost everywhere (the set of points where W is

nonanalytic has measure zero; see, e.g., Ref. [155], Sec. 25), it is sufficient to assume a single such point as j = jc where

W (1)[ jc+, j̃] �= W (1)[ jc−, j̃]. To study the derivative in j̃ we assume that the presence of a nonzero j̃ = ±ǫ has an infinitesimal

effect on potentially all cumulants; that is to say, we assume that we can expand the cumulant-generating functional of the

perturbed system

W [ j,±ǫ] = W [ j, 0] ± ǫ

{∑∞
n=0

G+
n jn

n!
, j > jc

∑∞
n=0

G−
n jn

n!
, j < jc

}
+ O(ǫ2).

This assumption is equivalent to stating that we assume all linear response Green’s functions Gn for cumulants of arbitrary order

n to exist. For a given physical system this assumption has to be checked; however, it is quite reasonable to assume to hold for

typical systems. The zeroth-order terms G0 must be chosen such that W [0,±ǫ] = 0 (due to normalization) and that W [ j,±ǫ] is

continuous at jc; for otherwise W would be nonconvex, thus in contradiction to being a cumulant-generating functional. Here

the notation ǫG±
n jn is to read

∫
ds ǫ(s)

∏n
i=1{
∫

dti j(ti)} G±(s, t1, . . . , tn).

Considering the left- and right-sided derivative by j̃

∂Ŵ1[x∗; ±ǫ]

∂ (±ǫ)
= lim

ǫց0

1

±ǫ

{
sup

j

(
jTx∗ − W [ j, 0] ±

∞∑

n=0

ǫG±
n jn

n!

)
− sup

k

(
kTx∗ − W [k, 0]

)
+ O(ǫ2)

}
, (A15)

we need to distinguish three cases: (1) If x∗ is such that the supremum in (A10) is assumed at a point j �= jc, W is differentiable

in j. So j∗(x∗) is a local maximum of jTx∗ − W [ j], hence the first variation by j vanishes, so that we get, w.l.o.g. assuming

j > jc,

d

d (±ǫ)

(
jTx∗ − W [ j, 0] ±

∞∑

n=1

ǫ G+
n jn

n!

)∣∣∣∣
ǫ=0

=
∂ jT

∂ (±ǫ)
x∗ −

∂W T

∂ j︸ ︷︷ ︸
x∗

∂ j

∂ (±ǫ)

︸ ︷︷ ︸
≡0 vanishing variation

+
∞∑

n=1

G+
n jn

n!
=

∞∑

n=1

G+
n

n!
jn. (A16)

So the left- and right-sided derivatives by ǫ are identical; Ŵ1[x∗; j̃] is differentiable in j̃ for such x∗.

(2) If the supremum in (A10) is assumed at a point j = jc, we have (in the unperturbed system with ǫ = 0)

W (1)[ jc−, 0] � x∗
� W (1)[ jc+, 0].

In the case that the unequal signs hold strictly as “<” the x∗ form an open set; to it is clear that one can find an ǫ small enough

so that it also holds that

W (1)[ jc−, 0] ±
∞∑

n=1

ǫG−
n jn−1

c

n − 1!
< x∗ < W (1)[ jc+, 0] ±

∞∑

n=1

ǫG+
n jn−1

c

n − 1!
. (A17)
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Hence for all such ǫ one has the supremum at j = jc. Therefore the first term in the derivative (A15) evaluates to

jT
c x∗ − W [ jc, 0] ±

∞∑

n=0

ǫG−
n jn

c

n!
= jT

c x∗ − W [ jc, 0] ±
∞∑

n=0

ǫG+
n jn

c

n!
,

where equality in the latter condition holds due to continuity of the convex functions W [ j,±ǫ] in j, as stated above. The second

term correspondingly assumes the supremum at k = jc, so that the result of the limit in (A15) is

∂Ŵ1[x∗; ±ǫ]

∂ (±ǫ)
=

∞∑

n=0

G−
n jn

c

n!
=

∞∑

n=0

G+
n jn

c

n!
, (A18)

independent of whether we take the left- or the right-sided derivative.

(2) The last case to be checked is if x∗ = W (1)[ jc−, 0] or x∗ = W (1)[ jc+, 0]. It is sufficient to consider one case, say, “+.” If ǫ

is such that x∗ moves into the inner region so that (A17) holds, the derivation under point (2) shows that the derivative evaluates

to (A18). In the other case x∗ > W (1)[ jc+, 0] ±
∑∞

n=1
ǫG+

n jn−1
c

n−1!
and hence we have a local maximum j(x∗), as in case (1); the

derivative is hence (A16) with j = jc in the limit; so the left- and right-sided derivatives both yield the same result.

In summary, under the assumption of the existence of linear response Green’s functions for all cumulants follows that Ŵ1[x∗; j̃]

is everywhere differentiable in j̃; a Legendre transform with regard to j̃ is thus sufficient. The Legendre-Fenchel transform from

j to x∗ is, however, required in systems that show spontaneous symmetry breaking.

c. Consistency of Legendre transform in j̃

It is left to be checked that the additional transform from j̃ to x̃∗

Ŵ[x∗, x̃∗] = Ŵ1[x∗; j̃] − j̃Tx̃∗

is also such that a one-to-one relationship exists. Here a proof of the convexity of Ŵ1[x∗; j̃] seems not to be possible; to the

contrary, it can be shown rigorously that for certain systems that the Legendre transform with regard to both, j and j̃, is not well

defined [82]. For the special case of an Ornstein-Uhlenbeck process it is simple to check that Ŵ1 is convex down in j̃. In general

this is, however, not true. We therefore here instead demonstrate a weaker condition: We show that the equation of state that

follows from a formal definition of the MSRDJ effective action is indeed identical to that of the OM effective action. The latter,

as stated above, can be defined rigorously. This is done by deriving the nontrivial part of the equation of state of the MSRDJ

formalism (22) directly from the well-defined effective action Ŵ1.

We start by rewriting the definition of the Legendre-Fenchel transform as

Ŵ1[x∗; j̃] = − sup
j

ln

∫

x

exp
(
SOM[x; j̃] + j(x − x∗)

)
.

The supremum assumed at the physical value j = 0 implies that x∗ = 〈x〉 equals the mean of the process. This condition, with

δx = x − x∗, is equivalently given by

0
!= 〈δx〉 ≡

∫

δx

δx exp(SOM[x∗ + δx; j̃]), (A19)

where we assumed the OM form of the action, but kept the dependence on the source j̃ [as in (16)]

SOM[x; j̃] = −
1

2D
[∂t x − f (x) + j̃]T[∂t x − f (x) + j̃].

We have seen in (13) that we may express this action as the Legendre transform with respect to the auxiliary field x̃; this is so

because SOM is convex in ∂t x − f (x) + j̃ and every convex function can be written as a Legendre transform of a suitably chosen

function (namely, its Legendre transform)

SOM[x; j̃] = extremize
x̃

x̃T [∂t x − f (x) + j̃] +
D

2
x̃Tx̃. (A20)

The extremum is hence attained at x̃ = −D−1[∂t x − f (x) + j̃]. This allows us to rewrite the OM action, expanded in δx = x − x∗,

as

SOM[x∗ + δx] =
1

2

−1

D

[
∂t x − f (x) + j̃

]T
︸ ︷︷ ︸

x̃T

[
∂t x

∗ − f (x∗) + j̃ + ∂tδx − f (1)(x∗) δx +
∞∑

n=2

f (n)(x∗)

n!
δxn

]

= extremize
x̃

x̃T [∂tδx − f (1)(x∗) δx] +
D

2
x̃Tx̃ + x̃T [∂t x

∗ − f (x∗) + j̃] + x̃T

∞∑

n=2

f (n)(x∗)

n!
δxn.
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The first two terms in the second line contain all terms bilinear in δx and x̃, so they define the propagator. The third term can be

regarded as a shift of the mean of the noise; a term that is linear in x̃. The last term contains the non-Gaussian terms that produce

corrections. If we neglected these corrections, the remaining terms would correspond to an Ornstein-Uhlenbeck process δx that

is driven by a noise ξ with mean 〈ξ 〉 = ∂t x
∗ − f (x∗) + j̃ and variance D. Because the noise is chosen to be Gaussian, we can

rewrite the extremum condition (A20) as an integral over x̃:

0
!= 〈δx〉 ≡

∫

δx,x̃

δx exp

(
x̃T (∂t − f (1)(x∗)) δx +

D

2
x̃Tx̃ + x̃T (∂t x

∗ − f (x∗) + j̃) + x̃T

∞∑

n=2

f (n)

n!
δxn

)
. (A21)

In the following we will show that this equation is fulfilled if the term ∂t x
∗ − f (x∗) + j̃ is represented by the negative of all

one-line irreducible diagrams with one uncontracted x̃-leg; we denote the sum of these diagrams by �. If we assume (as we

normally do) that the representation by diagrams is convergent, this can be seen as the defining property of Ŵ
(1)
MSRDJ,x̃,fl. that

we formally obtain from a Legendre transform with respect to both, j and j̃. We can then conclude that ∂t x
∗ − f (x∗) + j̃ =

−� = Ŵ
(1)
MSRDJ,x̃,fl.. We will first demonstrate how to obtain this result from a formal Legendre transform also with regard to j̃.

Afterwards, we will demonstrate that indeed the identification of ∂t x
∗ − f (x∗) + j̃ = −� solves Eq. (A21).

The equations of state derived from the formally performed Legendre transform of W [ j, j̃] with regard to j and j̃ to

ŴMSRDJ[x
∗, x̃∗] are

j̃(t ) =
δŴMSRDJ

δx̃∗(t )
→ ∂t x

∗ − f (x∗) + D x̃∗ + j̃ = Ŵ
(1)
MSRDJ,x̃,fl.[x

∗, x̃∗],

j(t ) =
δŴMSRDJ

δx∗(t )
→ −∂t x̃

∗ − f ′(x∗) x̃∗ + j = Ŵ
(1)
MSRDJ,x,fl.[x

∗, x̃∗]. (A22)

The second equation for the physically relevant value j ≡ 0

admits the solution x̃∗ ≡ 0. This is so because the left-hand

side is linear in x̃∗ and the right-hand side vanishes for x̃∗ = 0,

because one cannot produce any nonvanishing diagrams with

one amputated x-leg. One can therefore insert x̃∗ ≡ 0 into the

first equation of state to obtain a single nontrivial equation

∂t x
∗ − f (x∗) + j̃ = Ŵ

(1)
MSRDJ,x̃,fl.[x

∗, 0], (A23)

which shows the first part of our assertion by the usual proof

that Ŵfl. is composed of one-line irreducible diagrams alone

(see, e.g., Kleinert [72], Sec. 3.23.6, or Helias and Dahmen

[80] Sec. XIV).

We hence are left to show the diagrammatic statement,

namely, that

0 =
∫

δx,x̃

δx exp

(
x̃T [∂t − f (1)(x∗)] δx +

D

2
x̃Tx̃

− x̃T �(x∗) + x̃T

∞∑

n=2

f (n)

n!
δxn

)
. (A24)

The Gaussian part in the first line defines the usual propa-

gators �xx = 〈xx〉 and �x̃x = 〈x̃x〉, whereas �x̃x̃ ≡ 0. A non-

vanishing contribution requires the explicitly present term δx

in the integrand to be contracted. It cannot be contracted by

the propagator �xx, because the other leg of the propagator

would need to connect to a δx from an interaction vertex

of the form x̃ δxn; contracting the remaining x̃ would hence

require at least one closed response loop formed by �x̃x, so

the contribution vanishes. For the same reason there cannot

appear any tadpole subdiagrams that are attached by a δx. The

only possibility is hence to contract the explicitly present δx

with an x̃ of an interaction vertex by the propagator �x̃x. Thus

the produced diagrammatic corrections to the mean are of the

form of tadpole diagrams

�xx̃ graph with single uncontracted x̃.

We defined −� to contain all one-line irreducible diagrams

with one amputated x̃-leg and negative sign. The presence

of the term −x̃ �(x∗) hence cancels all irreducible tadpole

diagrams with a single amputated x̃-leg. Likewise, reducible

contributions cannot appear, because any reducible diagram

would contain at least one tadpole subdiagram; but these

subdiagrams are canceled by the presence of −x̃�(x∗) as well.

As a result, we conclude that no diagrams remain, and hence

Eq. (A24) holds. This proves that the solution to the equations

of state (A23), obtained from the formal joint Legendre trans-

form with regard to both, j and j̃, solves condition Eq. (A21)

(even if it is not clear that this is the only solution).

In summary, the specific feature of the MSRDJ formalism

that the expectation value of x̃ vanishes cures the fact that

the Legendre transform with respect to j̃ is not necessarily

well defined, because it allows the reduction from the pair

of equations of state (A22) to a single one (A23). The latter

can be derived in the well-defined OM formalism, as shown

above. The Legendre transform from Ŵ1[x∗; j̃] to Ŵ[x∗, x̃∗] can

therefore be considered a formal step, merely used to simplify

the diagrammatic derivation of the equation of state.

5. The effective action in the MSRDJ and

the Onsager-Machlup formalism

Considering Ŵ as a potential whose extremal points are

the solutions of a differential equation and that x̃ = 0 is

the extremizing solution, we might conclude from Ŵ(n)
x...x = 0

[shown in Eq. (A3)] that Ŵ is constant [or at least nonanalytic

in (x̌, 0)]. However, Ŵ is clearly nonconstant. It turns out that

setting x̃ = 0 is correct for the stationary point x̌, but does

not give us the true shape of the “energy landscape” for a

different x in a neighborhood of x̌. This is so because it is

forbidden to set x̃ to a constant value prior to the calculation

of the statistics of x; instead we must integrate it out, since it is

just a Hubbard-Stratonovich auxiliary field used to formulate
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a constraint. Only for Gaussian noise, this leads to the OM

action (7). For arbitrary noise distributions, we can define the

cumulant-generating function without the need to first define

the OM action by writing

WOM[ j] = ln

∫
Dx

∫
Dx̃ exp(S[x, x̃] + jT x). (A25)

This makes sense because we introduced x̃ as an auxiliary

variable to represent the delta-distribution and j̃ to measure

the response function. If we are not interested in the latter, but

just in the statistics of x, we can drop j̃ in (15) to obtain (A25).

The OM-type effective action then takes the form

ŴOM[x∗] = sup
j

jTx∗ − WOM[ j]

= [ jTx∗ − WOM[ j]] j such that x∗= ∂
∂ j

WOM[ j]. (A26)

Let us expose the connection to the MSRDJ formalism more

clearly by performing the Legendre transform with respect to

j and j̃ gradually instead of simultaneously:

Ŵ1[x∗, j̃] := sup
j

jTx∗ − W [ j, j̃],

Ŵ2[x∗, x̃∗] := j̃ x̃∗ + Ŵ1[x∗, j̃]
∣∣

j̃ such that x̃∗=−∂ j̃Ŵ1[x∗, j̃]
.

In order to define Ŵ2, we had to assume that the relation

j̃ → ∂ j̃Ŵ1[x∗, j̃] is invertible. This is given if Ŵ1 is convex in

j̃. So this is a sufficient condition, but not a necessary one.8

We easily see that ŴOM[x∗] = Ŵ1[x∗, 0]. For the identification

of Ŵ2, observe that for the elimination of j obtaining Ŵ1, we

choose j[x∗, j̃] such that

x∗ =
∂W

∂ j
[ j[x∗, j̃], j̃].

Note that by this notation, we have also lifted possible ambi-

guities due to a multivalued derivative of W with respect to

j, because we have fixed W (1) to x∗ (see also Sec. A 2). In

the second step, yielding Ŵ2, we determine j̃ in the following

way:

x̃∗ = −
d

d j̃
Ŵ1[x∗, j̃] = −

d

d j̃
{ j[x∗, j̃]x∗ − W [ j[x∗, j̃], j̃]}

= −
∂ j

∂ j̃
x∗ +

∂W

∂ j
[ j[x∗, j̃], j̃]

︸ ︷︷ ︸
=x∗

∂ j

∂ j̃
+

∂W

∂ j̃
[ j[x∗, j̃], j̃]

=
∂W

∂ j̃
[ j[x∗, j̃], j̃],

which leads to the identification ŴMSRDJ[x
∗, x̃∗] = Ŵ2[x∗, x̃∗].

Therefore, we obtain ŴOM by performing the Legendre trans-

form of ŴMSRDJ with respect to x̃∗ and setting j̃ = 0 af-

terwards, which is equivalent to finding the x̃∗ extremizing

ŴMSRDJ[x
∗, x̃∗] for given x∗, or, in other words,

ŴOM[x∗] = extremize
x̃

ŴMSRDJ[x
∗, x̃] =: extremize

x̃
Ŵ[x∗, x̃].

8Consider, for example, the function f : R
2 → R : (x, y)T →

1

2
(x2 − y2), which is not convex, but Legendre-transformable

(namely, on itself).

The Legendre transform (A26) implies

δ2

δx(t )δx(t ′)
ŴOM[x] =

{
δ2

δ j(t )δ j(t ′)
W [ j, j̃]

}−1

. (A27)

So, expressed in words, the second derivative of ŴOM at x∗

equals the inverse of 〈δxδx〉. Note that all [·]−1 are meant as

the inverse of operators acting on functions. For our model,

in frequency domain these inversions are simple (matrix)

inversions, whereas in time domain this amounts to finding the

Green’s function of the operator or, in other words, solving a

differential equation. Therefore, we can relate the integrated

covariances, given by the zero mode of the covariances in

Fourier space by Fourier-transforming (A27) and inverting it:

δ2

δJ (ω)δJ (ω′)
W [J, J̃] =

{
δ2

δX (ω)δX (ω′)
ŴOM[X ]

}−1

. (A28)

6. Relation between SOM and SMSRDJ

in case of non-Gaussian noise

In this section, we demonstrate that approximations of

ŴOM and ŴMSRDJ are not as simply related as their exact

counterparts. For non-Gaussian noise, even the comparison of

the tree-level approximations of the effective actions in both

formalisms yield counterintuitive result,

−SOM[x] �= extremize
x̃

− SMSRDJ[x, x̃] in general. (A29)

To see this as an example, consider the SDE:

d

dt
x = f (x) + ξ,

with the cumulant-generating function of the noise ξ includ-

ing a nonvanishing third-order cumulant of strength α as

defined in (25). Then, the MSRDJ-action is given by

SMSRDJ[x, x̃] = x̃
[
ẋ − f (x)

]
+ Wξ (x̃).

We want to calculate

SOM[x] := ln

{∫
dx̃ exp (SMSRDJ[x, x̃])

}

to linear order in α. We expand SMSRDJ around the saddle point

x̃0[x], defined by

∂SMSRDJ

∂ x̃
[x, x̃0[x]] = 0,

which leads to

x̃0[x] =
f (x) − ẋ

D
−

α

2

[
f (x) − ẋ

]2

D2
+ O(α2).

By expanding x̃0[x] in α and inserting it into S and ∂2S
∂ x̃2 , we

observe that

SMSRDJ[x, x̃0[x]] = −
[ẋ − f (x)]2

2D
+

α

3!

[ f (x) − ẋ]3

D3

+ O(α2),

∂2SMSRDJ

∂ x̃2
[x, x̃0[x]] = D

{
1 −

α

D2
[ẋ − f (x)]

}
+ O(α2).

(A30)
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Computing the contribution from the fluctuations around the stationary point with respect to x̃ yields

∫
dx̃ exp (SMSRDJ[x, x̃]) =

∫
dx̃ exp


SMSRDJ[x, x̃0] +

∂2SMSRDJ

∂ x̃2
[x, x̃0]

(x̃ − x̃0[x])2

2
+

∂3SMSRDJ

∂ x̃3
[x, x̃0]

︸ ︷︷ ︸
=α

(x̃ − x̃0[x])3

3!




y:=(x̃−x̃0[x])= exp (SMSRDJ[x, x̃0[x]])

∫
dy exp

(
1

2

∂2SMSRDJ

∂ x̃2
[x, x̃0]y2

)(
1 +

1

3!
αy3

)
+ O(α2)

= exp (SMSRDJ[x, x̃0[x]])

√
2π

∂2SMSRDJ

∂ x̃2 [x, x̃0]
+ O(α2)

= exp (SMSRDJ[x, x̃0[x]])

√
2π

D{1 − α
D2 [ẋ − f (x)]}

+ O(α2)

= exp

(
−

[ẋ − f (x)]2

2D
+

α

3!

[ f (x] − ẋ)3

D3

)√
2π

D

(
1 +

α

2D2
[ẋ − f (x)]

)
+ O(α2).

So, in total, we have

SOM[x] =
1

2
ln

(
2π

D

)
−

[ẋ − f (x)]2

2D
−

α

3!

[ẋ − f (x)]3

D3︸ ︷︷ ︸
=supx̃ SMSRDJ[x,x̃]+O(α2 )

+
α

2D2
[ẋ − f (x)] + O

(
α2
)
.

This is the announced result (26). We see that the fluctuations around the saddle-point value of the action lead to additional

terms contributing to SOM, not only constant, but also x-dependent ones. We can reformulate this to (A29), so the relation we

obtained for the respective effective actions does not hold for the actions, i.e., the tree-level approximations of the effective

actions.

7. The loop expansion for vertices up to order three, the propagator, and its small parameter

In this section, we explain in more detail how to translate the Feynman diagrams into algebraic expressions and which

diagrams contribute to the first order of the loop expansion. This is of course textbook knowledge [4,72,80]. However, we find

it useful to recapitulate the calculation in our notation preparing the introduction of the functional renormalization group, and

furthermore, it gives us the opportunity to show what is the small parameter in our model. This is unclear a priori because its

action is not multiplied by a small constant, as usually assumed in the context of a loop expansion.

a. General structure of diagrams contributing to Ŵfl.

To obtain all diagrams that contribute to the l-loop correction to δn

δX n
δm

δX̃ m Ŵfl. we draw all possible connected, one-particle

irreducible (1PI) diagrams with l loops and n ingoing and m outgoing external legs. One-particle irreducible diagrams are those

that cannot be separated into two unconnected pieces by cutting a single propagator. This is an advantage in terms of practical

computations of the Legendre transform Ŵfl. over the cumulant-generating function W where one has to account for all connected

diagrams, leading to a larger number of terms to evaluate (a self-contained proof as an induction over the number of loops can

be found in Ref. [80]).

In our case the number of diagrams reduces further, because in the Itô discretization of the stochastic differential equation,

loops that are constructed out of only directed propagators (�X̃X ) pointing all in the same direction evaluate to zero [8].

Therefore, all diagrams that contain such a response loop vanish. This is the reason why the diagram shown in Eq. (29) is

indeed the only one to be considered for the one-loop contribution to the one-point vertex. Usually there are several ways

of connecting propagators and interaction vertices that lead to the same diagram. We account for this fact by multiplying

each diagram with a prefactor that equals the number of equivalent diagrammatic representations. We will demonstrate how

to determine the multiplicity and how to translate diagrams into algebraic expressions by means of the example of the one-loop

contributions to the propagator.
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Example: one-loop fluctuation corrections to Ŵ
(2)
fl. . The first fluctuation corrections to Ŵ

(2)
fl. consist of those diagrams that have

two interaction vertices and two amputated legs. The latter property defines what is known as “self-energy corrections,”

In principle, we could also draw a diagram of this shape with two ingoing external legs which, however, would contain a

response loop and therefore vanishes. Thus, there is no contribution to Ŵ
(2)
XX,fl.. The prefactors are determined as follows. For the

first diagram we have two interaction vertices to choose from to get the external outgoing leg. Moreover, we have to select one

of the two ingoing legs from the remaining vertex to be the external ingoing leg. Finally, there are two possibilities to connect

the internal legs of the two vertices: either as shown above or cross-connected. In total this gives a multiplicity of 23 = 8. The

minus sign is due to the sign in our definition of the effective action and hence is present in all diagrams. The prefactor of the

second diagram stems from the two possibilities to connect the internal legs. Using this counting scheme, we have to include the

factors of the Taylor expansion on the left-hand side ( 1
2!

for two times the derivative with respect to X̃ ).

Now we use Table I to obtain the algebraic expression for the diagrams where we have to integrate over all internal

frequencies. Taking into account all frequency conservations at the propagators and the interaction vertices we get for the first

diagram

Ŵ
(2)
x̃x,fl. = −8

∫
dω

β2

(2π )4

2πD

ω2 + m2

2π

−i(ω + σ2) + m
δ(σ1 + σ2) = 4

β2D

2πm

1

iσ1 + 2m
δ(σ1 + σ2),

where we used the residue theorem to solve the integral. With the second diagram we proceed in the same way and obtain

Ŵ
(2)
x̃x̃,fl. = 2

D2

2πm

1

σ 2
1 + (2m)2

δ(σ1 + σ2).

Distributing the result for the mixed derivative evenly between the two off-diagonal entries we can write the one-loop corrections

to the second derivative of the effective action as

Ŵ
(2)
fl.

(σ1, σ2) =

(
0 1

−iσ1+2m

1
iσ1+2m

D

σ 2
1 +(2m)2

)
2β2D

2πm
δ(σ1 + σ2).

b. The propagator in one-loop approximation

Making use of the property of the Legendre transform Ŵ(2)� = 1 [see (23)], we obtain the one-loop approximation of the

propagator and hence, the variance and the response functions by solving the former identity for �. In frequency domain this

yields

1 =

(
Ŵ

(2)

XX̃
(ω)�X̃ X (−ω) Ŵ

(2)

XX̃
(ω)�X̃ X̃ (−ω)

Ŵ
(2)

X̃X
(ω)�XX (−ω) − Ŵ

(2)

X̃ X̃
(ω)�X̃X (−ω) Ŵ

(2)

X̃X
(ω)�XX̃ (−ω) − Ŵ

(2)

X̃ X̃
(ω)�X̃ X̃ (−ω)

)
. (A31)

For Ŵ(2) we use the one-loop result that we derived in the previous section

Ŵ(2)(ω) = −S(2) + Ŵ
(2)
fl. =




0
(
−iω + m + A

−iω+2m

)

(
iω + m + A

iω+2m

)
D
(

1 − A

ω2+(2m)2

)

.

The variables m and A are expressed in terms of the model parameters as m = −l + 2βx∗ and A = 2β2D/m. Equation (A31) is

solved by

�X̃ X̃ (ω) = 0,

�X̃X (ω) = [�XX̃ (ω)]∗ =
iω + 2m

(iω + m)(iω + 2m) + A
,

�XX (ω) = �xx̃(ω)D�x̃x(ω) − �xx̃(ω)Ŵ
(2)

X̃X,fl.
(ω)DAŴ

(2)

XX̃ ,fl.
(ω)�x̃x(ω),
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where, we introduced the notation �(ω,ω′) = �(ω)2πδ(ω + ω′). In time domain these equations read

�x̃x(t, t ′) = �xx̃(t ′, t ) = − H (t ′ − t )

[
m1 − 2m

m1 − m2

em1|t−t ′| +
2m − m2

m1 − m2

em2|t−t ′|
]

(A32)

�xx(t ′, t ) = −

{
D[m2

1 − (2m)2 + A]

2
(
m2

1 − m2
2

)
m1

em1|t−t ′| +
D[(2m)2 − m2

2 − A]

2
(
m2

1 − m2
2

)
m2

em2|t−t ′|

}
, (A33)

where m1/2 = 3m/2 ±
√

m2/4 − A for which the relation m2 < 2m < m < m1 < 0 holds in case of a choice of parameters for

which the classical fixed point x0 is stable.

c. The three-point vertex in one-loop approximation

The corrections to the three-point interaction vertex read as

Often it is useful to go into the time domain, which yields

Ŵ
(3)
x̃xx,fl.

(t1, t2, t3) =





−8β3 D
m

e2m(t1−t3 ), t1 > t2 > t3

−8β3 D
m

e2m(t1−t2 ), t1 > t3 > t2

0, else

. (A34)

For the BMW approximation we will need the two quantities Ŵ
(3)

X̃XX,fl.
(σ1,−σ1, 0) and Ŵ

(3)

X̃XX,fl.
(0, σ2,−σ2) which in one-loop

approximation read

Ŵ
(3)

X̃XX,fl.
(σ1,−σ1, 0) = −

4β3D

(2π )2

4m + iσ1

m2(2m + iσ1)2
, Ŵ

(3)

X̃XX,fl.
(0, σ2,−σ2) = −

16β3D

(2π )2m

1

σ 2
2 + 4m2

,

which in a time domain yields

Ŵ
(3)
x̃xx,fl.,1(t1, t2) = −

8β3D

2πm
H (t1 − t2)

(
t1 − t2 −

1

2m

)
e2m(t1−t2 ), Ŵ

(3)
x̃xx,fl.,2(t1, t2) =

8β3D

2πm

1

2m
e2m|t1−t2|.

A comparison between the fluctuation corrections Ŵfl. and the corresponding terms in the action S reveals that Ŵ
(2)
xx̃,fl.

counteracts the tree-level contribution m, whereas the x̃x̃- and the x̃xx-contributions are enhanced. Therefore, the linear term

m of the differential equation gets weakened such that for large noise it could even effectively vanish. This would correspond to

a second-order phase transition signaled by the divergence of fluctuations (given by the Ginzburg criterion; see, e.g., Ref. [13],

i.p., Sec. 6.4). However, we are unable to explore this regime because the destabilization of the trivial fix point is always

accompanied by a breakdown of the loop expansion, as we will demonstrate in the following.

d. Reduction from three to one parameter

Obviously, we increase the escape probability by decreasing the leak term, which amounts to approaching the critical point.

These two effects cannot be decoupled by appropriately redefining the noise level D. We see this by rescaling the time as s = l t

and accordingly the fields ỹ(s) =
√

D/l x̃(t ) and y(s) =
√

l/D x(t ), which leads to

S[ỹ, y] =
∫

ds
[
ỹT(∂s + 1)y − β ′ỹTy2 + ỹT 1

2
ỹ
]
, where β ′ =

√
D

l3
.

The unstable fixed point is then given by x0 = 1/β ′ in the noiseless case. Therefore, β ′ is the only free parameter of the model and

the strength of the nonlinearity determines also the distance between the stable and the unstable fixed point. So it is impossible

to find a set of parameters for which on the one hand the system operates far from the unstable fixed point so that the expansion

around the stable fixed point is accurate and for which on the other hand and concurrently the effect of the nonlinearity is stronger

than the linear part.
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(a)

(b)

FIG. 7. Adding an additional loop to an arbitrary diagram: In panel (a) we attach the concerning line to two �xx̃ lines, in panel (b) to two

�xx lines. The mixed case is analogous and therefore omitted. Shaded circles denote arbitrary parts of a diagram.

e. The small parameter of the loop expansion

In this section we will argue that the expansion of the effective action in diagrams with an increasing number of loops is

effectively an expansion in terms of powers of β2D. Therefore, diagrams with higher number of loops contribute less important

corrections as long as the product of strength of the nonlinearity and the noise variance is small.

We note that every additional loop requires exactly one �xx-propagator and two interaction vertices. We see this as follows:

Adding a loop means attaching a propagator line to two points in the original diagram. This requires points at which exactly three

lines meet; if we had interactions higher than three, there could also be more. The interaction bears the strength β which leads

to the part β2 in the loop expansion parameter. It is not clear a priori, however, that the line connecting these two interactions

cannot be a �x̃x- line. But Fig. 7 demonstrates that the form of the interaction with two ingoing lines and one outgoing line

always forces us to plug in a �xx propagator, which introduces the factor D. So, the loop expansion in our case is an expansion

in the parameter β2D. This consideration compares only different loop orders and not the first loop order to the tree level, and

therefore, this is not in contradiction to (30).

8. Equation of motion for δx from Fokker-Plank equation

We start by multiplying the Fokker-Plank equation [92] for a time-dependent density

τ∂t ρ(x, t ) = −∂x

[
f (x) −

D

2
∂x

]
ρ(x, t )

by x and integrating over x:

∂t 〈x〉(t ) = −
∫

dx x

{
∂x[ f (x)ρ(x, t )] −

D

2
∂2

x ρ(x, t )

}
=
∫

dx f (x)ρ(x, t ) = −l〈x(t )〉 + β〈x(t )2〉,

where in the second step we used partial integration. From the second term only a derivative under an integral remains, which

vanishes because we assume that ρ vanishes at the borders of the integral—a property that we will use repeatedly in the following.

In the last equality, furthermore, we inserted f (x) = −lx + βx2. Now, we need an ODE for the second moment, which we obtain

analogously:

∂t 〈x2〉(t ) = −
∫

dx x2

{
∂x[ f (x)ρ(x, t )] −

D

2
∂2

x ρ(x, t )

}
=
∫

dx [2x f (x)ρ(x, t ) − Dx∂xρ(x, t )]

=
∫

dx [2x f (x)ρ(x, t ) + Dρ(x, t )] = −2l〈x2〉(t ) + 2β〈x3〉(t ) + D.

Truncating the hierarchy of moments by a Gaussian closure, that is approximating

〈x3〉 = 〈〈x3〉〉 + 3〈〈x2〉〉〈〈x〉〉 + 〈〈x〉〉3 = 〈〈x3〉〉 + 3〈x2〉〈x〉 − 2〈x〉3 ≈ 3〈x2〉〈x〉 − 2〈x〉3

leads to

∂〈x2〉(t ) ≈ −2l〈x2〉(t ) + 6β〈x2〉(t )〈x〉(t ) − 4β(〈x〉(t ))3 + D.

Using 〈〈x2〉〉 = 〈x2〉 − 〈x〉2, the equations for the first two cumulants read

∂t 〈〈x〉〉(t ) = −l〈〈x〉〉(t ) + β{〈〈x2〉〉(t ) + [〈〈x〉〉(t )]2}, (A35)

∂t 〈〈x2〉〉(t ) = −2l〈〈x2〉〉(t ) + 4β〈〈x2〉〉(t )〈〈x〉〉(t ) + D. (A36)
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We can interpret the one-loop equation of motion as an approximation of the solution of the Fokker-Planck equations of

motion (A35) and (A36). To see this, we formally solve (A36) and insert the result into (A35). It is convenient to express the

time dependence of x and � as a deviation from the stationary solution, defining

〈x〉(t ) = x̄ + δx(t ), (A37)

〈〈x2〉〉(t ) = �̄ + δ�(t ), m̄ = −l + 2β x̄, m(t ) = −l + 2β〈x〉(t ) = m̄ + 2βδx(t ). (A38)

Using these definitions, we obtain for the stationary case

0 = −l x̄ + β x̄2 + β�̄ and �̄ = −
D

2m̄
,

which follows from (A35) and (A36), respectively. Expressing these equations in the new variables (A37) and (A38) yields

∂tδx(t ) = ∂t 〈〈x〉〉(t ) = −(l − 2β x̄)δx(t ) + βδx(t )2−l x̄ + β x̄2 + β�̄︸ ︷︷ ︸
=0

+ βδ�(t )

= m̄δx(t ) + β δx(t )2 + β δ�(t ) (A39)

and

∂tδ�(t ) = 2m̄�̄ + D︸ ︷︷ ︸
=0

+2[m̄ + 2β δx(t )]δ�(t ) + 4β�̄ δx(t ) = 2m(t ) δ�(t ) + 4β�̄ δx(t ).

The latter equation turns out to be more convenient for our purpose compared to (A36). Solving it by variation of constants, we

obtain

δ�(t ) = 4β�̄

∫ t

t0

dt ′′ δx(t ′′) e
∫ t

t ′′ dt ′ 2m(t ′ ) = 4β�̄

∫ t

t0

dt ′′ δx(t ′′) e2m̄(t−t ′′ ) e4β
∫ t

t ′′ dt ′ δx(t ′ ), (A40)

where we introduced the initial time t0. We notice that 〈〈x2〉〉(t = t0) = �∗, since δ�(t = t0) = 0. This corresponds to x being

distributed according to the stationary distribution with mean value shifted by the initial deflection δx(t0). If we assume that

δx(t ) is small for all t , we can expand the second exponential function in (A40) and neglect terms of O(δx3). Thus

δ�(t ) = 4β�̄

∫ t

t0

dt ′′ δx(t ′′) e2m̄(t−t ′′ ) + 16�̄β2

∫ t

t0

dt ′′ δx(t ′′) e2m̄(t−t ′′ )

∫ t

t ′′
dt ′ δx(t ′) + O(δx3)

= 4β�̄

∫ t

t0

dt ′ δx(t ′) e2m̄(t−t ′ ) + 16�̄β2

∫ t

t0

dt ′ δx(t ′)

∫ t ′

t0

dt ′′ δx(t ′′) e2m̄(t−t ′′ ) + O(δx3).

If we insert this result into (A39) we obtain up to second order

∂tδx(t ) =m̄δx(t ) + β δx(t )2 + 4β2�̄

∫ t

t0

dt ′ δx(t ′) e2m̄(t−t ′ ) + 16�̄β3

∫ t

t0

dt ′ δx(t ′)

∫ t ′

t0

dt ′′ δx(t ′′) e2m̄(t−t ′′ ),

which equals exactly the one-loop result (32).

9. Derivation of fRG-flow equations

For completeness, the derivation of the Wetterich equation [35] as presented in Ref. [36] is repeated in the following. The

difference of the current presentation is the additional presence of the response field. We will use the property ∂λŴλ = −∂λWλ,

which holds generally for Legendre transforms of quantities depending on a parameter, here λ [[4], Eq. (1.93)]. This yields,

using the regulator of the form introduced in (36),

∂Ŵ̃λ[X ∗, X̃ ∗]

∂λ
= −

∂Wλ[J, J̃]

∂λ
= −

1

Z[J, J̃]

∫
DX

∫
DX̃

∂

∂λ
�Sλ[X, X̃ ] exp(Sλ[X, X̃ ]) exp(JTX + J̃TX̃ )

=
1

2

∫
dω

∫
dω′

〈
X (ω)

∂Rλ(ω,ω′)

∂λ
X̃ (ω′)

〉

=
1

2

∫
dω

∫
dω′

{
�X̃X,λ(ω′, ω)

∂Rλ(ω,ω′)

∂λ
+ X ∗(ω)

∂Rλ(ω,ω′)

∂λ
X̃ ∗(ω′)

}

=
1

2
Tr

{
�X̃X,λ

∂Rλ

∂λ

}
+

∂

∂λ
�Sλ[X ∗, X̃ ∗]. (A41)

In the third line we used 〈X̃ (ω′)X (ω)〉 = 〈〈X̃ (ω)X (ω′)〉〉 + 〈X̃ (ω′)〉〈X (ω)〉 = �X̃X,λ(ω′, ω) + X ∗(ω)X̃ ∗(ω′). From the relation

(37) between Ŵ̃λ and Ŵλ we arrive directly at the final form of the Wetterich equation as presented in Eq. (38).
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10. Flow equations for the self-energy and the interaction vertex

The nonvanishing diagrams for the self-energy translate to

∂Ŵ
(2)

X̃X,λ
(σ1,−σ1)

∂λ
=

1

2

∫
dω

(2π )
Ŵ

(3)

X̃XX,λ
(σ1,−σ1 − ω,ω)�XX,λ(ω)

∂Rλ

∂λ
�X̃X,λ(ω)Ŵ

(3)

XXX̃ ,λ
(−σ1,−ω, σ1 + ω)�X̃X,λ(σ1 + ω)

+
1

2

∫
dω

(2π )
Ŵ

(3)

X̃XX,λ
(σ1,−σ1 − ω,ω)�XX,λ(ω)Ŵ

(3)

XXX̃ ,λ
(−σ1,−ω, σ1 + ω)

×�X̃X,λ(σ1 + ω)
∂Rλ

∂λ
�X̃X,λ(σ1 + ω)

+
1

2

∫
dω

(2π )
Ŵ

(3)

X̃XX,λ
(σ1,−σ1 − ω,ω)�XX̃ ,λ(ω)Ŵ

(3)

XX̃X,λ
(−σ1,−ω, σ1 + ω)

×�XX,λ(σ1 + ω)
∂Rλ

∂λ
�X̃X,λ(σ1 + ω),

∂Ŵ
(2)

X̃ X̃ ,λ
(σ1,−σ1)

∂λ
=

1

2

∫
dω

(2π )
Ŵ

(3)

X̃XX,λ
(σ1,−σ1 − ω,ω)�XX,λ(ω)

∂Rλ

∂λ
�X̃X,λ(ω)

×Ŵ
(3)

X̃XX,λ
(−σ1,−ω, σ1 + ω)�XX,λ(σ1 + ω) + σ1 → −σ1.

The diagrams for the flow of the interaction vertex are given by

11. Effective potential from MSRDJ formalism: Equilibrium systems

For systems in thermodynamic equilibrium, where the statistical weight for each configuration x(t ) is of Boltzmann form

(setting the inverse temperature β = 2
D

)

p(x) ∝ exp

[
−

2

D
V (x)

]
, (A42)
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a construction of such an effective action has been given in the seminal work of de Dominicis [81] (see his Appendix). In this

particular case, the Langevin equation

dx(t ) = −V ′(x) dt + dW (t ) (A43)

has an equilibrium distribution of the form (A42), given that the variance D of the noise is 〈dW (s)dW (t )〉 = Dδts dt ; a condition

that follows from demanding vanishing probability flux in the associated Fokker-Planck equation (see, e.g., Ref. [154]); it is one

expression of the fluctuation-dissipation theorem that holds in equilibrium systems.

Moreover, a linear term D
2

h x(t ) in addition to the potential V leads to a source term hTx̃ in the MSRDJ action S[x, x̃] =
x̃T[∂t x + V ′(x)] + D

2
x̃Tx̃ + hTx̃ which corresponds to (A43). The equation of state (18) for x̃ admits a solution x̃ ≡ 0, for which

the equation of state for x takes the form

h[x∗] =
δŴ

δx̃∗(t )
= −

δS

δx̃∗(t )
+ · · · = ∂t x

∗ + V ′(x∗) + · · · , (A44)

where · · · denote all fluctuation corrections. The construction of the effective action by de Dominics proceeds by functionally

integrating the equation of state [see Ref. [81], Eq. (A4)]

ŴDD[x∗] :=
∫ x∗

0

δx h[x] = ŴDD[0] +
1

2
x∗T∂t x

∗ + V (x∗) + · · · . (A45)

The last step requires that the equation of state (A44) be the derivative of a functional; otherwise the functional integration

would not yield a unique result, independent of the integration path. This is where the equilibrium properties, the existence of

a Boltzmann weight (A42), enter. The latter implies further that the problem can be treated with statics alone. For a constant

solution x∗(t ) = x̄∗, the effective potential is thus

UDD[x̄∗] := Ŵ[x̄∗] = V (x̄∗) + · · · . (A46)

12. Effective potential in a bistable network model

We here compute the one-loop corrections to the OM effective potential for the bistable system (54). The MSRDJ action is

S[x, x̃] = x̃T
[
(∂t + r)x +

u

3
x3
]

+
D

2
x̃Tx̃.

To lowest order in the fluctuations we have Ŵ0[x∗, x̃∗] = −S[x∗, x̃∗] for the MSRDJ effective action and the OM effective action

(24) is SOM[x∗] = 1
2D

[(∂t + r)x + u
3
x3]

2
. Next, we assume a stationary solution x̄∗ and compute all corrections around vanishing

response fields x̃ = 0.

a. Corrections to the mean

The only one-loop contribution to Ŵ
(1)
x̃,fl. is given by the tadpole diagram

where m is a function of the mean value and given by m(x) = −r − ux2. Including this into the equation of state, its physically

relevant solutions read

x0 = 0, x± = ±

√

−2
r

u
+
√( r

u

)2

−
3

2

D

u
.
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b. Self-energy

The one-loop corrections to Ŵ(2) are given by the following diagrams:

The zero frequency components of the self-energy read

∫
dσ2 Ŵ

(2)
x̃x,fl.

(0, σ2) =
1

2π

[
(ux∗)2D

m2
+

uD

2m

]
,

∫
dσ2 Ŵ

(2)
x̃x̃,fl.

(0, σ2) =
1

4π

(ux∗)2D2

m3
.

c. Construction of corrections to the effective potential

We have now expanded the effective action around the reference point x̃∗ = 0 and x̄∗, which takes the form

Ŵ[x∗, x̃∗] = x̃∗




eq. of state= 0︷ ︸︸ ︷
−rx∗ −

u

3
x∗3 + Ŵ

(1)
x̃,fl. +

(
− ∂t − r − ux∗2 + Ŵ

(2)
x̃x,fl.

)
(x̄∗ − x∗)


+

1

2
x̃∗(−D + Ŵ

(2)
x̃x̃,fl.

)
x̃∗ + O[(x̄∗ − x∗)2].

We compute only terms up to linear order in x̄∗ − x∗ because this generates all terms up to quadratic order in the effective

potential. This is enough to calculate its curvature, which equals the integrated covariance at the stationary points. The response

field still appears quadratically in Ŵ[x∗, x̃∗], so that we can extremize x̃∗ by writing the OM effective action with corrected

vertices as

ŴOM[x∗] = extremize
x̃∗

Ŵ[x∗, x̃∗] =
[(

−∂t − r − ux∗2 + Ŵ
(2)
x̃x,fl.

)
δx∗] 1

2

[
D − Ŵ

(2)
x̃x̃,fl.

]−1[(−∂t − r − ux∗2 + Ŵ
(2)
x̃x,fl.

)
δx∗],

where δx∗ = x̄∗ − x∗. Computing the effective potential we get

U (x̄∗) = ŴOM[x̄∗]/T =
1

2

{[
r + ux∗2 − D

(
ux∗

m

)2 − uD
2m

]
δx∗}2

D − (ux∗D)2

2m3

, (A47)

where m = m(x∗) = −r − ux∗2.

13. Definition of the Fourier transform

By choosing the Fourier transform of the fields and the sources as the inverse of each other, we arrive at a representation of

our formulas that look similar in time and frequency domain. Therefore we define

x(t ) =
∫

dω

2π
eiωt X (ω), j(t ) =

∫
dω e−iωt J (ω), X (ω) =

∫
dt e−iωt x(t ), J (ω) =

∫
dt

2π
eiωt j(t ).

Thus, we obtain xT j =
∫

dt x(t ) j(t ) =
∫

dω X (ω)J (ω). Moreover, we get with y := (x, x̃)T for the matrix A of the quadratic

part of the action S0[x, x̃] =
∫

dt
∫

dt ′ y(t )A(t, t ′)y(t ′)

A(t, t ′) =
∫

dω

∫
dω′ e−i(ωt+ω′t ′ )A(ω,ω′), A−1(t, t ′) =

∫
dω

2π

∫
dω′

2π
ei(ωt+ω′t ′ )A−1(ω,ω′),

A(ω,ω′) =
∫

dt

2π

∫
dt ′

2π
ei(ωt+ω′t ′ )A(t, t ′), A−1(ω,ω′) =

∫
dt

∫
dt ′ e−i(ωt+ω′t ′ )A−1(t, t ′),
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due to the chain rule for functional derivatives. From this we can derive the following useful identities:
∫

dt

∫
dt ′ y(t )A(t, t ′)y(t ′) =

∫
dω

∫
dω′ Y (ω)A(ω,ω′)Y (ω′),

∫
dt

∫
dt ′ j̄(t )A−1(t, t ′) j̄(t ′) =

∫
dω

∫
dω′ J̄ (ω)A−1(ω,ω′)J̄ (ω′),

∫
ds A(t, s)A−1(s, t ′) = δ

(
t − t ′)⇔

∫
dσ A(ω, σ )A−1(σ, ω′) = δ(ω − ω′).

For the interaction part of the action we obtain
∫

dt x̃(t )x2(t ) =
∫

dω

2π

∫
dω′

2π
X̃ (ω)X (ω′)X (−ω − ω′).
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