000872736 001__ 872736
000872736 005__ 20220930130227.0
000872736 0247_ $$2doi$$a10.2967/jnumed.119.238568
000872736 0247_ $$2ISSN$$a0022-3123
000872736 0247_ $$2ISSN$$a0097-9058
000872736 0247_ $$2ISSN$$a0161-5505
000872736 0247_ $$2ISSN$$a1535-5667
000872736 0247_ $$2ISSN$$a2159-662X
000872736 0247_ $$2Handle$$a2128/25658
000872736 0247_ $$2pmid$$apmid:32005771
000872736 0247_ $$2WOS$$aWOS:000568832100013
000872736 037__ $$aFZJ-2020-00214
000872736 082__ $$a610
000872736 1001_ $$0P:(DE-Juel1)141877$$aFilss, Christian P$$b0$$ufzj
000872736 245__ $$aFlare phenomenon in O-(2-[ 18 F]-Fluoroethyl)-L-Tyrosine PET after resection of gliomas
000872736 260__ $$aNew York, NY$$bSoc.$$c2020
000872736 3367_ $$2DRIVER$$aarticle
000872736 3367_ $$2DataCite$$aOutput Types/Journal article
000872736 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599843339_3342
000872736 3367_ $$2BibTeX$$aARTICLE
000872736 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872736 3367_ $$00$$2EndNote$$aJournal Article
000872736 520__ $$aPET using O-(2-[18F]Fluoroethyl)-L-tyrosine (18F-FET) is useful to detect residual tumor tissue after glioma resection. Recent animal experiments detected reactive changes of 18F-FET uptake at the rim of the resection cavity within the first two weeks after resection of gliomas. In the present study, we evaluated pre- and postoperative 18F-FET PET scans of glioma patients with particular emphasis on the identification of reactive changes after surgery. Methods: Forty-three patients with cerebral gliomas (9 low-grade, 34 high-grade; 9 primary tumors, 34 recurrent tumors) who had preoperative (time before surgery, median 23 d, range 6-44 d) and postoperative 18F-FET-PET (time after surgery, median 14, range 5–28 d) were included. PET scans (20-40 min p.i.) were evaluated visually for complete or incomplete resection (CR, IR) and compared with MRI. Changes of 18F-FET-uptake in residual tumor were evaluated by tumor-to-brain ratios (TBRmax) and in the vicinity of the resection cavity by maximum lesion-to-brain ratios (LBRmax). Results: Visual analysis of 18F-FET PET scans revealed CR in 16/43 patients and IR in the remaining patients. PET results were concordant with MRI in 69% of the patients. LBRmax of 18F-FET uptake in the vicinity of the resection cavity was significantly higher compared with preoperative values (1.59 ± 0.36 versus 1.14 ± 0.17; n = 43, p<0.001). In 11 patients (26%) a “flare phenomenon” was observed with a considerable increase of 18F-FET uptake compared with preoperative values in either the residual tumor (n = 5) or in areas remote from tumor in the preoperative PET scan (n = 6) (2.92 ± 1.24 versus 1.62 ± 0.75; p<0.001). Further follow-up in five patients showed decreasing 18F-FET uptake in the flare areas in four and progress in one case. Conclusion: Our study confirms that 18F-FET PET provides valuable information for assessing the success of glioma resection. Postoperative reactive changes at the rim of the resection cavity appear to be mild. However, in 23 % of the patients, a postoperative “flare phenomenon” was observed that warrants further investigation.
000872736 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000872736 588__ $$aDataset connected to CrossRef
000872736 7001_ $$0P:(DE-HGF)0$$aSchmitz, Ann k$$b1
000872736 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b2$$ufzj
000872736 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b3$$ufzj
000872736 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b4$$ufzj
000872736 7001_ $$0P:(DE-HGF)0$$aWerner, Jan Michael$$b5
000872736 7001_ $$0P:(DE-Juel1)165921$$aSabel, Michael$$b6
000872736 7001_ $$0P:(DE-HGF)0$$aRapp, Marion$$b7
000872736 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b8
000872736 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b9$$ufzj
000872736 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M.$$b10$$ufzj
000872736 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b11$$ufzj
000872736 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b12$$ufzj
000872736 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b13$$ufzj
000872736 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl Josef$$b14$$eCorresponding author$$ufzj
000872736 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.119.238568$$gp. jnumed.119.238568 -$$n9$$p 1294-1299 $$tJournal of nuclear medicine$$v61$$x0022-3123$$y2020
000872736 8564_ $$uhttps://juser.fz-juelich.de/record/872736/files/Filss_2020_Post%20Print_J%20Nucl_Flare%20phenomenon%20in%20O-%282-%5B18F%5D-Fluoroethyl%29-L-Tyrosine%20PET%20after%20resection%20of%20gliomas.pdf$$yOpenAccess
000872736 8767_ $$8AQ1E678ACC9E$$92020-01-15$$d2020-01-15$$ePublication charges$$jZahlung erfolgt$$lKK: Barbers$$pJNUMED/2019/238568$$zUSD 450,-
000872736 909CO $$ooai:juser.fz-juelich.de:872736$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b0$$kFZJ
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b2$$kFZJ
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b3$$kFZJ
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b4$$kFZJ
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b9$$kFZJ
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b10$$kFZJ
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b11$$kFZJ
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b12$$kFZJ
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b13$$kFZJ
000872736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b14$$kFZJ
000872736 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000872736 9141_ $$y2020
000872736 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872736 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000872736 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2017
000872736 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872736 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872736 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872736 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872736 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000872736 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2017
000872736 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872736 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000872736 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872736 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000872736 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872736 920__ $$lyes
000872736 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000872736 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
000872736 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000872736 980__ $$ajournal
000872736 980__ $$aVDB
000872736 980__ $$aUNRESTRICTED
000872736 980__ $$aI:(DE-Juel1)INM-4-20090406
000872736 980__ $$aI:(DE-Juel1)INM-3-20090406
000872736 980__ $$aI:(DE-Juel1)INM-5-20090406
000872736 980__ $$aAPC
000872736 9801_ $$aAPC
000872736 9801_ $$aFullTexts