001     872743
005     20210130004258.0
024 7 _ |a 10.1021/acschemneuro.9b00458
|2 doi
024 7 _ |a 2128/24235
|2 Handle
024 7 _ |a altmetric:70480895
|2 altmetric
024 7 _ |a pmid:31710458
|2 pmid
024 7 _ |a WOS:000503918400005
|2 WOS
037 _ _ |a FZJ-2020-00221
082 _ _ |a 540
100 1 _ |a Zhang, Tao
|0 P:(DE-Juel1)174389
|b 0
245 _ _ |a Toward the Mode of Action of the Clinical Stage All- d -Enantiomeric Peptide RD2 on Aβ42 Aggregation
260 _ _ |a Washington, DC
|c 2019
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1580883268_16416
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aggregation of amyloid-β (Aβ) into oligomers and fibrillary structures is critical for the pathogenesis of Alzheimer’s disease (AD). Recently, research effort has been focused on developing novel agents that can preferentially suppress Aβ oligomer mediated toxicities, for example, by directly targeting these toxic assemblies. The compound RD2 has been developed and optimized for Aβ42 monomer binding and stabilization of the monomer in its native intrinsically disordered conformation. It has been demonstrated to improve and even reverse the cognitive and behavioral deficits in AD mouse models, while the detailed mechanism of action is not fully clarified. Here we focused on exploring the interaction between RD2 and Aβ42 monomers and its consequences for the fibrillation of Aβ42. RD2 binds to Aβ42 monomers with nanomolar affinities, according to microscale thermophoresis and surface plasmon resonance measurements. Complexes between RD2 and Aβ42 monomers are formed at 1:1 and other stoichiometries, as revealed by analytical ultracentrifugation. At substoichiometric levels, RD2 slows down the secondary structure conversion of Aβ42 and significantly delays the fibril formation. Our research provides experimental evidence in supporting that RD2 eliminates toxic Aβ assemblies by stabilizing Aβ monomers in their native intrinsically disordered conformation. The study further supports the promising application of RD2 in counteracting Aβ aggregation related pathologies.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gering, Ian
|0 P:(DE-Juel1)171922
|b 1
|u fzj
700 1 _ |a Kutzsche, Janine
|0 P:(DE-Juel1)159137
|b 2
|u fzj
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 3
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acschemneuro.9b00458
|g Vol. 10, no. 12, p. 4800 - 4809
|0 PERI:(DE-600)2528493-9
|n 12
|p 4800 - 4809
|t ACS chemical neuroscience
|v 10
|y 2019
|x 1948-7193
856 4 _ |y Published on 2019-11-11. Available in OpenAccess from 2020-11-11.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/872743/files/Autorenmanuskript%20Towards%20the%20mode%20of%20action%20of%20the%20clinical%20stage%20all-D-enantiomeric%20peptide%20RD2%20on%20A%CE%B242%20aggregation.pdf
856 4 _ |u https://juser.fz-juelich.de/record/872743/files/acschemneuro.9b00458.pdf
|y Restricted
856 4 _ |y Published on 2019-11-11. Available in OpenAccess from 2020-11-11.
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/872743/files/Autorenmanuskript%20Towards%20the%20mode%20of%20action%20of%20the%20clinical%20stage%20all-D-enantiomeric%20peptide%20RD2%20on%20A%CE%B242%20aggregation.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/872743/files/acschemneuro.9b00458.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:872743
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162443
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CHEM NEUROSCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21