000872747 001__ 872747
000872747 005__ 20210130004259.0
000872747 0247_ $$2doi$$a10.1021/acs.jpcb.8b08903
000872747 0247_ $$2ISSN$$a1089-5647
000872747 0247_ $$2ISSN$$a1520-5207
000872747 0247_ $$2ISSN$$a1520-6106
000872747 0247_ $$2Handle$$a2128/23872
000872747 0247_ $$2altmetric$$aaltmetric:53645814
000872747 0247_ $$2pmid$$apmid:30525615
000872747 0247_ $$2WOS$$aWOS:000459836700001
000872747 037__ $$aFZJ-2020-00225
000872747 082__ $$a530
000872747 1001_ $$0P:(DE-Juel1)169918$$aMöckel, Christina$$b0
000872747 245__ $$aIntegrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics
000872747 260__ $$aWashington, DC$$bSoc.$$c2019
000872747 3367_ $$2DRIVER$$aarticle
000872747 3367_ $$2DataCite$$aOutput Types/Journal article
000872747 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605539693_2431
000872747 3367_ $$2BibTeX$$aARTICLE
000872747 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872747 3367_ $$00$$2EndNote$$aJournal Article
000872747 520__ $$aUnderstanding the function of a protein requires not only knowledge of its tertiary structure but also an understanding of its conformational dynamics. Nuclear magnetic resonance (NMR) spectroscopy, polarization-resolved fluorescence spectroscopy and molecular dynamics (MD) simulations are powerful methods to provide detailed insight into protein dynamics on multiple time scales by monitoring global rotational diffusion and local flexibility (order parameters) that are sensitive to inter- and intramolecular interactions, respectively. We present an integrated approach where data from these techniques are analyzed and interpreted within a joint theoretical description of depolarization and diffusion, demonstrating their conceptual similarities. This integrated approach is then applied to the autophagy-related protein GABARAP in its cytosolic form, elucidating its dynamics on the pico- to nanosecond time scale and its rotational and translational diffusion for protein concentrations spanning 9 orders of magnitude. We compare the dynamics of GABARAP as monitored by 15N spin relaxation of the backbone amide groups, fluorescence anisotropy decays and fluorescence correlation spectroscopy of side chains labeled with BODIPY FL, and molecular movies of the protein from MD simulations. The recovered parameters agree very well between the distinct techniques if the different measurement conditions (probe localization, sample concentration) are taken into account. Moreover, we propose a method that compares the order parameters of the backbone and side chains to identify potential hinges for large-scale, functionally relevant intradomain motions, such as residues 27/28 at the interface between the two subdomains of GABARAP. In conclusion, the integrated concept of cross-fertilizing techniques presented here is fundamental to obtaining a comprehensive quantitative picture of multiscale protein dynamics and solvation. The possibility to employ these validated techniques under cellular conditions and combine them with fluorescence imaging opens up the perspective of studying the functional dynamics of GABARAP or other proteins in live cells.
000872747 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000872747 536__ $$0G:(DE-Juel1)IHRS-BioSoft-20061101$$aIHRS-BioSoft - International Helmholtz Research School of Biophysics and Soft Matter (IHRS-BioSoft-20061101)$$cIHRS-BioSoft-20061101$$x1
000872747 536__ $$0G:(DE-Juel1)jics6a_20180501$$aStructural dynamics of murine guanylate binding proteins, their dimerization and interaction with lipid bilayers (jics6a_20180501)$$cjics6a_20180501$$fStructural dynamics of murine guanylate binding proteins, their dimerization and interaction with lipid bilayers$$x2
000872747 588__ $$aDataset connected to CrossRef
000872747 7001_ $$0P:(DE-HGF)0$$aKubiak, Jakub$$b1
000872747 7001_ $$0P:(DE-Juel1)157850$$aSchillinger, Oliver$$b2
000872747 7001_ $$0P:(DE-HGF)0$$aKühnemuth, Ralf$$b3
000872747 7001_ $$0P:(DE-Juel1)145868$$aDella Corte, Dennis$$b4
000872747 7001_ $$0P:(DE-Juel1)132018$$aSchröder, Gunnar F.$$b5
000872747 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b6
000872747 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b7$$eCorresponding author
000872747 7001_ $$0P:(DE-Juel1)IHRS-BioSoft-20911$$aSeidel, Claus A. M.$$b8$$eCorresponding author
000872747 7001_ $$0P:(DE-Juel1)144510$$aNeudecker, Philipp$$b9$$eCorresponding author
000872747 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.8b08903$$gVol. 123, no. 7, p. 1453 - 1480$$n7$$p1453 - 1480$$tThe journal of physical chemistry <Washington, DC> / B B, Condensed matter, materials, surfaces, interfaces & biophysical$$v123$$x1520-5207$$y2019
000872747 8564_ $$uhttps://juser.fz-juelich.de/record/872747/files/Integrated%20NMR%20Fluorescence%20and%20Molecular%20Dynamics.pdf$$yOpenAccess
000872747 8564_ $$uhttps://juser.fz-juelich.de/record/872747/files/Integrated%20NMR%20Fluorescence%20and%20Molecular%20Dynamics.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872747 909CO $$ooai:juser.fz-juelich.de:872747$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169918$$aForschungszentrum Jülich$$b0$$kFZJ
000872747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132018$$aForschungszentrum Jülich$$b5$$kFZJ
000872747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b6$$kFZJ
000872747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b7$$kFZJ
000872747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)IHRS-BioSoft-20911$$aForschungszentrum Jülich$$b8$$kFZJ
000872747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144510$$aForschungszentrum Jülich$$b9$$kFZJ
000872747 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000872747 9141_ $$y2019
000872747 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872747 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872747 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000872747 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872747 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872747 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872747 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872747 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872747 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872747 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872747 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2017
000872747 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872747 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872747 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872747 920__ $$lyes
000872747 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000872747 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000872747 980__ $$ajournal
000872747 980__ $$aVDB
000872747 980__ $$aI:(DE-Juel1)ICS-6-20110106
000872747 980__ $$aI:(DE-82)080012_20140620
000872747 980__ $$aUNRESTRICTED
000872747 9801_ $$aFullTexts
000872747 981__ $$aI:(DE-Juel1)IBI-7-20200312