Home > Publications database > Integrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics > print |
001 | 872747 | ||
005 | 20210130004259.0 | ||
024 | 7 | _ | |a 10.1021/acs.jpcb.8b08903 |2 doi |
024 | 7 | _ | |a 1089-5647 |2 ISSN |
024 | 7 | _ | |a 1520-5207 |2 ISSN |
024 | 7 | _ | |a 1520-6106 |2 ISSN |
024 | 7 | _ | |a 2128/23872 |2 Handle |
024 | 7 | _ | |a altmetric:53645814 |2 altmetric |
024 | 7 | _ | |a pmid:30525615 |2 pmid |
024 | 7 | _ | |a WOS:000459836700001 |2 WOS |
037 | _ | _ | |a FZJ-2020-00225 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Möckel, Christina |0 P:(DE-Juel1)169918 |b 0 |
245 | _ | _ | |a Integrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics |
260 | _ | _ | |a Washington, DC |c 2019 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1605539693_2431 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Understanding the function of a protein requires not only knowledge of its tertiary structure but also an understanding of its conformational dynamics. Nuclear magnetic resonance (NMR) spectroscopy, polarization-resolved fluorescence spectroscopy and molecular dynamics (MD) simulations are powerful methods to provide detailed insight into protein dynamics on multiple time scales by monitoring global rotational diffusion and local flexibility (order parameters) that are sensitive to inter- and intramolecular interactions, respectively. We present an integrated approach where data from these techniques are analyzed and interpreted within a joint theoretical description of depolarization and diffusion, demonstrating their conceptual similarities. This integrated approach is then applied to the autophagy-related protein GABARAP in its cytosolic form, elucidating its dynamics on the pico- to nanosecond time scale and its rotational and translational diffusion for protein concentrations spanning 9 orders of magnitude. We compare the dynamics of GABARAP as monitored by 15N spin relaxation of the backbone amide groups, fluorescence anisotropy decays and fluorescence correlation spectroscopy of side chains labeled with BODIPY FL, and molecular movies of the protein from MD simulations. The recovered parameters agree very well between the distinct techniques if the different measurement conditions (probe localization, sample concentration) are taken into account. Moreover, we propose a method that compares the order parameters of the backbone and side chains to identify potential hinges for large-scale, functionally relevant intradomain motions, such as residues 27/28 at the interface between the two subdomains of GABARAP. In conclusion, the integrated concept of cross-fertilizing techniques presented here is fundamental to obtaining a comprehensive quantitative picture of multiscale protein dynamics and solvation. The possibility to employ these validated techniques under cellular conditions and combine them with fluorescence imaging opens up the perspective of studying the functional dynamics of GABARAP or other proteins in live cells. |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
536 | _ | _ | |a IHRS-BioSoft - International Helmholtz Research School of Biophysics and Soft Matter (IHRS-BioSoft-20061101) |0 G:(DE-Juel1)IHRS-BioSoft-20061101 |c IHRS-BioSoft-20061101 |x 1 |
536 | _ | _ | |a Structural dynamics of murine guanylate binding proteins, their dimerization and interaction with lipid bilayers (jics6a_20180501) |0 G:(DE-Juel1)jics6a_20180501 |c jics6a_20180501 |f Structural dynamics of murine guanylate binding proteins, their dimerization and interaction with lipid bilayers |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Kubiak, Jakub |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schillinger, Oliver |0 P:(DE-Juel1)157850 |b 2 |
700 | 1 | _ | |a Kühnemuth, Ralf |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Della Corte, Dennis |0 P:(DE-Juel1)145868 |b 4 |
700 | 1 | _ | |a Schröder, Gunnar F. |0 P:(DE-Juel1)132018 |b 5 |
700 | 1 | _ | |a Willbold, Dieter |0 P:(DE-Juel1)132029 |b 6 |
700 | 1 | _ | |a Strodel, Birgit |0 P:(DE-Juel1)132024 |b 7 |e Corresponding author |
700 | 1 | _ | |a Seidel, Claus A. M. |0 P:(DE-Juel1)IHRS-BioSoft-20911 |b 8 |e Corresponding author |
700 | 1 | _ | |a Neudecker, Philipp |0 P:(DE-Juel1)144510 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.jpcb.8b08903 |g Vol. 123, no. 7, p. 1453 - 1480 |0 PERI:(DE-600)2006039-7 |n 7 |p 1453 - 1480 |t The journal of physical chemistry |v 123 |y 2019 |x 1520-5207 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/872747/files/Integrated%20NMR%20Fluorescence%20and%20Molecular%20Dynamics.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/872747/files/Integrated%20NMR%20Fluorescence%20and%20Molecular%20Dynamics.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:872747 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)169918 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)132018 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)132029 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)132024 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)IHRS-BioSoft-20911 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)144510 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Free to read |0 LIC:(DE-HGF)PublisherOA |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS CHEM B : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|