Home > Publications database > Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents > print |
001 | 872752 | ||
005 | 20210130004300.0 | ||
024 | 7 | _ | |a 10.1371/journal.ppat.1007978 |2 doi |
024 | 7 | _ | |a 1553-7366 |2 ISSN |
024 | 7 | _ | |a 1553-7374 |2 ISSN |
024 | 7 | _ | |a 2128/23876 |2 Handle |
024 | 7 | _ | |a altmetric:65712703 |2 altmetric |
024 | 7 | _ | |a pmid:31469892 |2 pmid |
024 | 7 | _ | |a WOS:000488322100029 |2 WOS |
037 | _ | _ | |a FZJ-2020-00230 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Perov, Sergei |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents |
260 | _ | _ | |a Lawrence, Kan. |c 2019 |b PLoS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1579102555_8097 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Curli amyloid fibrils secreted by Enterobacteriaceae mediate host cell adhesion and contribute to biofilm formation, thereby promoting bacterial resistance to environmental stressors. Here, we present crystal structures of amyloid-forming segments from the major curli subunit, CsgA, revealing steric zipper fibrils of tightly mated β-sheets, demonstrating a structural link between curli and human pathological amyloids. D-enantiomeric peptides, originally developed to interfere with Alzheimer's disease-associated amyloid-β, inhibited CsgA fibrillation and reduced biofilm formation in Salmonella typhimurium. Moreover, as previously shown, CsgA fibrils cross-seeded fibrillation of amyloid-β, providing support for the proposed structural resemblance and potential for cross-species amyloid interactions. The presented findings provide structural insights into amyloidogenic regions important for curli formation, suggest a novel strategy for disrupting amyloid-structured biofilms, and hypothesize on the formation of self-propagating prion-like species originating from a microbial source that could influence neurodegenerative diseases |
536 | _ | _ | |a 553 - Physical Basis of Diseases (POF3-553) |0 G:(DE-HGF)POF3-553 |c POF3-553 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Lidor, Ofir |0 0000-0001-6392-4647 |b 1 |
700 | 1 | _ | |a Salinas, Nir |0 0000-0002-3511-2243 |b 2 |
700 | 1 | _ | |a Golan, Nimrod |0 0000-0001-5064-0776 |b 3 |
700 | 1 | _ | |a Tayeb- Fligelman, Einav |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Deshmukh, Maya |0 0000-0002-3704-3229 |b 5 |
700 | 1 | _ | |a Willbold, Dieter |0 P:(DE-Juel1)132029 |b 6 |
700 | 1 | _ | |a Landau, Meytal |0 0000-0002-1743-3430 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1371/journal.ppat.1007978 |g Vol. 15, no. 8, p. e1007978 - |0 PERI:(DE-600)2205412-1 |n 8 |p e1007978 - |t PLoS pathogens |v 15 |y 2019 |x 1553-7374 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/872752/files/Structural%20Insights%20into%20Curli%20CsgA%20Cross-%CE%B2%20Fibril%20Architecture%20Inspire%20Repurposing%20of%20Anti-amyloid%20Compounds%20as%20Anti-biofilm%20Agents..pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/872752/files/Structural%20Insights%20into%20Curli%20CsgA%20Cross-%CE%B2%20Fibril%20Architecture%20Inspire%20Repurposing%20of%20Anti-amyloid%20Compounds%20as%20Anti-biofilm%20Agents..pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:872752 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)132029 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-553 |2 G:(DE-HGF)POF3-500 |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLOS PATHOG : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLOS PATHOG : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|