001     872761
005     20210130004302.0
024 7 _ |a 10.1038/s41477-019-0451-7
|2 doi
024 7 _ |a 2055-026X
|2 ISSN
024 7 _ |a 2055-0278
|2 ISSN
024 7 _ |a 2128/24242
|2 Handle
024 7 _ |a altmetric:62640479
|2 altmetric
024 7 _ |a pmid:31235877
|2 pmid
024 7 _ |a WOS:000474454600022
|2 WOS
037 _ _ |a FZJ-2020-00239
082 _ _ |a 580
100 1 _ |a Alvarez, Clarisa E.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Molecular adaptations of NADP-malic enzyme for its function in C4 photosynthesis in grasses
260 _ _ |a London
|c 2019
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582029973_32368
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In C4 grasses of agronomical interest, malate shuttled into the bundle sheath cells is decarboxylated mainly by nicotinamide adenine dinucleotide phosphate (NADP)-malic enzyme (C4-NADP-ME). The activity of C4-NADP-ME was optimized by natural selection to efficiently deliver CO2 to Rubisco. During its evolution from a plastidic non-photosynthetic NADP-ME, C4-NADP-ME acquired increased catalytic efficiency, tetrameric structure and pH-dependent inhibition by its substrate malate. Here, we identified specific amino acids important for these C4 adaptions based on strict differential conservation of amino acids, combined with solving the crystal structures of maize and sorghum C4-NADP-ME. Site-directed mutagenesis and struc-tural analyses show that Q503, L544 and E339 are involved in catalytic efficiency; E339 confers pH-dependent regulation by malate, F140 is critical for the stabilization of the oligomeric structure and the N-terminal region is involved in tetramerization. Together, the identified molecular adaptations form the basis for the efficient catalysis and regulation of one of the central biochemical steps in C4 metabolism
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bovdilova, Anastasiia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Höppner, Astrid
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wolff, Christian-Claus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Saigo, Mariana
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Trajtenberg, Felipe
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhang, Tao
|0 P:(DE-Juel1)174389
|b 6
700 1 _ |a Buschiazzo, Alejandro
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 8
700 1 _ |a Drincovich, Maria F.
|0 0000-0003-4897-3285
|b 9
700 1 _ |a Lercher, Martin J.
|0 0000-0003-3940-1621
|b 10
700 1 _ |a Maurino, Veronica G.
|0 0000-0002-3124-1451
|b 11
|e Corresponding author
773 _ _ |a 10.1038/s41477-019-0451-7
|g Vol. 5, no. 7, p. 755 - 765
|0 PERI:(DE-600)2815502-6
|n 7
|p 755 - 765
|t Nature plants
|v 5
|y 2019
|x 2055-0278
856 4 _ |u https://juser.fz-juelich.de/record/872761/files/s41477-019-0451-7.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/872761/files/s41477-019-0451-7.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/872761/files/Autorenmanuskript%20Molecular%20adaptations%20of%20NADP-malic%20enzyme%20for%20its%20function%20in%20C4%20photosynthesis%20in%20grasses.pdf
|y Published on 2019-06-24. Available in OpenAccess from 2019-12-24.
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/872761/files/Autorenmanuskript%20Molecular%20adaptations%20of%20NADP-malic%20enzyme%20for%20its%20function%20in%20C4%20photosynthesis%20in%20grasses.pdf?subformat=pdfa
|x pdfa
|y Published on 2019-06-24. Available in OpenAccess from 2019-12-24.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:872761
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)162443
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PLANTS : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT PLANTS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21