000872764 001__ 872764
000872764 005__ 20210130004302.0
000872764 0247_ $$2doi$$a10.1021/acs.jpcb.9b02338
000872764 0247_ $$2ISSN$$a1089-5647
000872764 0247_ $$2ISSN$$a1520-5207
000872764 0247_ $$2ISSN$$a1520-6106
000872764 0247_ $$2Handle$$a2128/24428
000872764 0247_ $$2altmetric$$aaltmetric:62834923
000872764 0247_ $$2pmid$$apmid:31246474
000872764 0247_ $$2WOS$$aWOS:000475540400002
000872764 037__ $$aFZJ-2020-00242
000872764 082__ $$a530
000872764 1001_ $$0P:(DE-HGF)0$$aPerez, Carlos$$b0
000872764 245__ $$aMechanism of Fibril and Soluble Oligomer Formation in Amyloid Beta and Hen Egg White Lysozyme Proteins
000872764 260__ $$aWashington, DC$$bSoc.$$c2019
000872764 3367_ $$2DRIVER$$aarticle
000872764 3367_ $$2DataCite$$aOutput Types/Journal article
000872764 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582898679_13830
000872764 3367_ $$2BibTeX$$aARTICLE
000872764 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872764 3367_ $$00$$2EndNote$$aJournal Article
000872764 520__ $$aAssembly and deposition of insoluble amyloid fibrils with a distinctive cross-β-sheet structure is the molecular hallmark of amyloidogenic diseases affecting the central nervous system as well as non-neuropathic amyloidosis. Amyloidogenic proteins form aggregates via kinetic pathways dictated by initial solution conditions. Often, early stage, cytotoxic, small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) precede the formation of late-stage rigid fibrils (RFs). Growing experimental evidence suggests that soluble gOs are off-pathway aggregates that do not directly convert into the final stage RFs. Yet, the kinetics of RFs aggregation under conditions that either promote or suppress the growth of gOs remain incompletely understood. Here we present a self-assembly model for amyloid fibril formation in the presence and absence of early stage off-pathway aggregates, driven by our experimental results on hen egg white lysozyme (HewL) and beta amyloid (Aβ) aggregation. The model reproduces a range of experimental observations including the sharp boundary in the protein concentration above which the self-assembly of gOs occurs. This is possible when both primary and secondary RFs nucleation rates are allowed to have a nonlinear dependence on initial protein concentration, hinting toward more complex prenucleation and RFs assembly scenarios. Moreover, analysis of RFs lag period in the presence and absence of gOs indicates that these off-pathway aggregates have an inhibitory effect on RFs nucleation. Finally, we incorporate the effect of an Aβ binding protein on the aggregation process in the model that allows us to identify the most suitable solution conditions for suppressing gOs and RFs formation.
000872764 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000872764 588__ $$aDataset connected to CrossRef
000872764 7001_ $$0P:(DE-HGF)0$$aMiti, Tatiana$$b1
000872764 7001_ $$0P:(DE-Juel1)180464$$aHasecke, Filip$$b2$$ufzj
000872764 7001_ $$00000-0002-6562-7715$$aMeisl, Georg$$b3
000872764 7001_ $$0P:(DE-Juel1)166306$$aHoyer, Wolfgang$$b4$$ufzj
000872764 7001_ $$0P:(DE-HGF)0$$aMuschol, Martin$$b5
000872764 7001_ $$00000-0002-3716-8742$$aUllah, Ghanim$$b6$$eCorresponding author
000872764 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.9b02338$$gVol. 123, no. 27, p. 5678 - 5689$$n27$$p5678 - 5689$$tThe journal of physical chemistry <Washington, DC> / B B, Condensed matter, materials, surfaces, interfaces & biophysical$$v123$$x1520-5207$$y2019
000872764 8564_ $$uhttps://juser.fz-juelich.de/record/872764/files/Autorenmanusript%20Mechanism%20of%20fibril%20and%20soluble%20oligomer%20formation%20in%20amyloid%20%CE%B2%20and%20hen%20egg%20white%20lysozyme%20proteins.pdf$$yPublished on 2019-06-18. Available in OpenAccess from 2020-06-18.$$zStatID:(DE-HGF)0510
000872764 8564_ $$uhttps://juser.fz-juelich.de/record/872764/files/acs.jpcb.9b02338.pdf$$yRestricted
000872764 8564_ $$uhttps://juser.fz-juelich.de/record/872764/files/acs.jpcb.9b02338.pdf?subformat=pdfa$$xpdfa$$yRestricted
000872764 909CO $$ooai:juser.fz-juelich.de:872764$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180464$$aForschungszentrum Jülich$$b2$$kFZJ
000872764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166306$$aForschungszentrum Jülich$$b4$$kFZJ
000872764 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000872764 9141_ $$y2020
000872764 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872764 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872764 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000872764 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872764 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872764 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872764 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872764 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872764 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872764 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2017
000872764 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872764 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872764 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872764 920__ $$lyes
000872764 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000872764 9801_ $$aFullTexts
000872764 980__ $$ajournal
000872764 980__ $$aVDB
000872764 980__ $$aUNRESTRICTED
000872764 980__ $$aI:(DE-Juel1)ICS-6-20110106
000872764 981__ $$aI:(DE-Juel1)IBI-7-20200312