001     872764
005     20210130004302.0
024 7 _ |a 10.1021/acs.jpcb.9b02338
|2 doi
024 7 _ |a 1089-5647
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a 2128/24428
|2 Handle
024 7 _ |a altmetric:62834923
|2 altmetric
024 7 _ |a pmid:31246474
|2 pmid
024 7 _ |a WOS:000475540400002
|2 WOS
037 _ _ |a FZJ-2020-00242
082 _ _ |a 530
100 1 _ |a Perez, Carlos
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mechanism of Fibril and Soluble Oligomer Formation in Amyloid Beta and Hen Egg White Lysozyme Proteins
260 _ _ |a Washington, DC
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582898679_13830
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Assembly and deposition of insoluble amyloid fibrils with a distinctive cross-β-sheet structure is the molecular hallmark of amyloidogenic diseases affecting the central nervous system as well as non-neuropathic amyloidosis. Amyloidogenic proteins form aggregates via kinetic pathways dictated by initial solution conditions. Often, early stage, cytotoxic, small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) precede the formation of late-stage rigid fibrils (RFs). Growing experimental evidence suggests that soluble gOs are off-pathway aggregates that do not directly convert into the final stage RFs. Yet, the kinetics of RFs aggregation under conditions that either promote or suppress the growth of gOs remain incompletely understood. Here we present a self-assembly model for amyloid fibril formation in the presence and absence of early stage off-pathway aggregates, driven by our experimental results on hen egg white lysozyme (HewL) and beta amyloid (Aβ) aggregation. The model reproduces a range of experimental observations including the sharp boundary in the protein concentration above which the self-assembly of gOs occurs. This is possible when both primary and secondary RFs nucleation rates are allowed to have a nonlinear dependence on initial protein concentration, hinting toward more complex prenucleation and RFs assembly scenarios. Moreover, analysis of RFs lag period in the presence and absence of gOs indicates that these off-pathway aggregates have an inhibitory effect on RFs nucleation. Finally, we incorporate the effect of an Aβ binding protein on the aggregation process in the model that allows us to identify the most suitable solution conditions for suppressing gOs and RFs formation.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Miti, Tatiana
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hasecke, Filip
|0 P:(DE-Juel1)180464
|b 2
|u fzj
700 1 _ |a Meisl, Georg
|0 0000-0002-6562-7715
|b 3
700 1 _ |a Hoyer, Wolfgang
|0 P:(DE-Juel1)166306
|b 4
|u fzj
700 1 _ |a Muschol, Martin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ullah, Ghanim
|0 0000-0002-3716-8742
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcb.9b02338
|g Vol. 123, no. 27, p. 5678 - 5689
|0 PERI:(DE-600)2006039-7
|n 27
|p 5678 - 5689
|t The journal of physical chemistry / B B, Condensed matter, materials, surfaces, interfaces & biophysical
|v 123
|y 2019
|x 1520-5207
856 4 _ |y Published on 2019-06-18. Available in OpenAccess from 2020-06-18.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/872764/files/Autorenmanusript%20Mechanism%20of%20fibril%20and%20soluble%20oligomer%20formation%20in%20amyloid%20%CE%B2%20and%20hen%20egg%20white%20lysozyme%20proteins.pdf
856 4 _ |u https://juser.fz-juelich.de/record/872764/files/acs.jpcb.9b02338.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/872764/files/acs.jpcb.9b02338.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:872764
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180464
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166306
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21