000872768 001__ 872768
000872768 005__ 20240712113234.0
000872768 0247_ $$2doi$$a10.3390/en13030612
000872768 0247_ $$2Handle$$a2128/24341
000872768 0247_ $$2WOS$$aWOS:000522489000105
000872768 0247_ $$2altmetric$$aaltmetric:76544623
000872768 037__ $$aFZJ-2020-00246
000872768 082__ $$a620
000872768 1001_ $$0P:(DE-Juel1)166215$$aScheepers, Fabian$$b0$$eCorresponding author$$ufzj
000872768 245__ $$aImproving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization
000872768 260__ $$aBasel$$bMDPI$$c2020
000872768 3367_ $$2DRIVER$$aarticle
000872768 3367_ $$2DataCite$$aOutput Types/Journal article
000872768 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582005871_521
000872768 3367_ $$2BibTeX$$aARTICLE
000872768 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872768 3367_ $$00$$2EndNote$$aJournal Article
000872768 520__ $$aHydrogen produced in a polymer electrolyte membrane (PEM) electrolyzer must be stored under high pressure. It is discussed whether the gas should be compressed in subsequent gas compressors or by the electrolyzer. While gas compressor stages can be reduced in the case of electrochemical compression, safety problems arise for thin membranes due to the undesired permeation of hydrogen across the membrane to the oxygen side, forming an explosive gas. In this study, a PEM system is modeled to evaluate the membrane-specific total system efficiency. The optimum efficiency is given depending on the external heat requirement, permeation, cell pressure, current density, and membrane thickness. It shows that the heat requirement and hydrogen permeation dominate the maximum efficiency below 1.6 V, while, above, the cell polarization is decisive. In addition, a pressure-optimized cell operation is introduced by which the optimum cathode pressure is set as a function of current density and membrane thickness. This approach indicates that thin membranes do not provide increased safety issues compared to thick membranes. However, operating an N212-based system instead of an N117-based one can generate twice the amount of hydrogen at the same system efficiency while only one compressor stage must be added.
000872768 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000872768 588__ $$aDataset connected to CrossRef
000872768 7001_ $$0P:(DE-Juel1)132718$$aStähler, Andrea$$b1$$ufzj
000872768 7001_ $$0P:(DE-Juel1)129930$$aStähler, Markus$$b2$$ufzj
000872768 7001_ $$0P:(DE-Juel1)177930$$aRauls, Edward$$b3$$ufzj
000872768 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b4$$ufzj
000872768 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b5$$ufzj
000872768 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b6$$ufzj
000872768 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en13030612$$gVol. 13, no. 3, p. 612 -$$n3$$p612 -$$tEnergies$$v13$$x1996-1073$$y2020
000872768 8564_ $$uhttps://juser.fz-juelich.de/record/872768/files/Invoice_energies-687473.pdf
000872768 8564_ $$uhttps://juser.fz-juelich.de/record/872768/files/Invoice_energies-687473.pdf?subformat=pdfa$$xpdfa
000872768 8564_ $$uhttps://juser.fz-juelich.de/record/872768/files/energies-13-00612.pdf$$yOpenAccess
000872768 8564_ $$uhttps://juser.fz-juelich.de/record/872768/files/energies-13-00612.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872768 8767_ $$8energies-687473$$92020-01-23$$d2020-01-27$$eAPC$$jZahlung erfolgt$$penergies-687473
000872768 909CO $$ooai:juser.fz-juelich.de:872768$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000872768 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872768 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872768 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872768 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872768 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2017
000872768 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000872768 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000872768 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872768 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872768 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872768 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872768 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872768 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872768 9141_ $$y2020
000872768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166215$$aForschungszentrum Jülich$$b0$$kFZJ
000872768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132718$$aForschungszentrum Jülich$$b1$$kFZJ
000872768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129930$$aForschungszentrum Jülich$$b2$$kFZJ
000872768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177930$$aForschungszentrum Jülich$$b3$$kFZJ
000872768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b4$$kFZJ
000872768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b5$$kFZJ
000872768 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b5$$kRWTH
000872768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b6$$kFZJ
000872768 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000872768 920__ $$lyes
000872768 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000872768 9801_ $$aAPC
000872768 9801_ $$aFullTexts
000872768 980__ $$ajournal
000872768 980__ $$aVDB
000872768 980__ $$aUNRESTRICTED
000872768 980__ $$aI:(DE-Juel1)IEK-14-20191129
000872768 980__ $$aAPC
000872768 981__ $$aI:(DE-Juel1)IET-4-20191129