001     872768
005     20240712113234.0
024 7 _ |2 doi
|a 10.3390/en13030612
024 7 _ |2 Handle
|a 2128/24341
024 7 _ |a WOS:000522489000105
|2 WOS
024 7 _ |a altmetric:76544623
|2 altmetric
037 _ _ |a FZJ-2020-00246
082 _ _ |a 620
100 1 _ |0 P:(DE-Juel1)166215
|a Scheepers, Fabian
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization
260 _ _ |a Basel
|b MDPI
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1582005871_521
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Hydrogen produced in a polymer electrolyte membrane (PEM) electrolyzer must be stored under high pressure. It is discussed whether the gas should be compressed in subsequent gas compressors or by the electrolyzer. While gas compressor stages can be reduced in the case of electrochemical compression, safety problems arise for thin membranes due to the undesired permeation of hydrogen across the membrane to the oxygen side, forming an explosive gas. In this study, a PEM system is modeled to evaluate the membrane-specific total system efficiency. The optimum efficiency is given depending on the external heat requirement, permeation, cell pressure, current density, and membrane thickness. It shows that the heat requirement and hydrogen permeation dominate the maximum efficiency below 1.6 V, while, above, the cell polarization is decisive. In addition, a pressure-optimized cell operation is introduced by which the optimum cathode pressure is set as a function of current density and membrane thickness. This approach indicates that thin membranes do not provide increased safety issues compared to thick membranes. However, operating an N212-based system instead of an N117-based one can generate twice the amount of hydrogen at the same system efficiency while only one compressor stage must be added.
536 _ _ |0 G:(DE-HGF)POF3-135
|a 135 - Fuel Cells (POF3-135)
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)132718
|a Stähler, Andrea
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)129930
|a Stähler, Markus
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)177930
|a Rauls, Edward
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)129892
|a Müller, Martin
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)129883
|a Lehnert, Werner
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)145276
|a Carmo, Marcelo
|b 6
|u fzj
773 _ _ |0 PERI:(DE-600)2437446-5
|a 10.3390/en13030612
|g Vol. 13, no. 3, p. 612 -
|n 3
|p 612 -
|t Energies
|v 13
|x 1996-1073
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/872768/files/Invoice_energies-687473.pdf
856 4 _ |u https://juser.fz-juelich.de/record/872768/files/Invoice_energies-687473.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/872768/files/energies-13-00612.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/872768/files/energies-13-00612.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:872768
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166215
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132718
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129930
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177930
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129892
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129883
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)129883
|a RWTH Aachen
|b 5
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145276
|a Forschungszentrum Jülich
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-135
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ENERGIES : 2017
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21