000872769 001__ 872769 000872769 005__ 20210130004303.0 000872769 0247_ $$2doi$$a10.1021/acs.jcim.8b00983 000872769 0247_ $$2ISSN$$a0095-2338 000872769 0247_ $$2ISSN$$a1520-5142 000872769 0247_ $$2ISSN$$a1549-9596 000872769 0247_ $$2ISSN$$a1549-960X 000872769 0247_ $$2Handle$$a2128/24239 000872769 0247_ $$2altmetric$$aaltmetric:58334193 000872769 0247_ $$2pmid$$apmid:30933519 000872769 0247_ $$2WOS$$aWOS:000469884900011 000872769 037__ $$aFZJ-2020-00247 000872769 082__ $$a540 000872769 1001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b0 000872769 245__ $$aTransition Metal Ion Interactions with Disordered Amyloid-β Peptides in the Pathogenesis of Alzheimer’s Disease: Insights from Computational Chemistry Studies 000872769 260__ $$aWashington, DC$$bAmerican Chemical Society64160$$c2019 000872769 3367_ $$2DRIVER$$aarticle 000872769 3367_ $$2DataCite$$aOutput Types/Journal article 000872769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580884901_16416 000872769 3367_ $$2BibTeX$$aARTICLE 000872769 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000872769 3367_ $$00$$2EndNote$$aJournal Article 000872769 520__ $$aMonomers and oligomers of the amyloid-β peptide aggregate to form the fibrils found in the brains of Alzheimer’s disease patients. These monomers and oligomers are largely disordered and can interact with transition metal ions, affecting the mechanism and kinetics of amyloid-β aggregation. Due to the disordered nature of amyloid-β, its rapid aggregation, as well as solvent and paramagnetic effects, experimental studies face challenges in the characterization of transition metal ions bound to amyloid-β monomers and oligomers. The details of the coordination chemistry between transition metals and amyloid-β obtained from experiments remain debated. Furthermore, the impact of transition metal ion binding on the monomeric or oligomeric amyloid-β structures and dynamics are still poorly understood. Computational chemistry studies can serve as an important complement to experimental studies and can provide additional knowledge on the binding between amyloid-β and transition metal ions. Many research groups conducted first-principles calculations, ab initio molecular dynamics simulations, quantum mechanics/classical mechanics simulations, and classical molecular dynamics simulations for studying the interplay between transition metal ions and amyloid-β monomers and oligomers. This review summarizes the current understanding of transition metal interactions with amyloid-β obtained from computational chemistry studies. We also emphasize the current view of the coordination chemistry between transition metal ions and amyloid-β. This information represents an important foundation for future metal ion chelator and drug design studies aiming to combat Alzheimer’s disease. 000872769 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0 000872769 588__ $$aDataset connected to CrossRef 000872769 7001_ $$00000-0002-0772-9350$$aCoskuner-Weber, Orkid$$b1$$eCorresponding author 000872769 773__ $$0PERI:(DE-600)1491237-5$$a10.1021/acs.jcim.8b00983$$gVol. 59, no. 5, p. 1782 - 1805$$n5$$p1782 - 1805$$tJournal of chemical information and modeling$$v59$$x1549-960X$$y2019 000872769 8564_ $$uhttps://juser.fz-juelich.de/record/872769/files/Autorenmanuskript%20Transition%20Metal%20Ion%20Interactions%20with%20Disordered%20Amyloid-%CE%B2%20Peptides%20in%20the%20Pathogenesis%20of%20Alzheimer%E2%80%99s%20Disease%20Insights%20from%20Computational%20Chemistry%20Studies.pdf$$yPublished on 2019-04-01. Available in OpenAccess from 2020-04-01.$$zStatID:(DE-HGF)0510 000872769 8564_ $$uhttps://juser.fz-juelich.de/record/872769/files/acs.jcim.8b00983.pdf$$yRestricted 000872769 8564_ $$uhttps://juser.fz-juelich.de/record/872769/files/Autorenmanuskript%20Transition%20Metal%20Ion%20Interactions%20with%20Disordered%20Amyloid-%CE%B2%20Peptides%20in%20the%20Pathogenesis%20of%20Alzheimer%E2%80%99s%20Disease%20Insights%20from%20Computational%20Chemistry%20Studies.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-04-01. Available in OpenAccess from 2020-04-01.$$zStatID:(DE-HGF)0510 000872769 8564_ $$uhttps://juser.fz-juelich.de/record/872769/files/acs.jcim.8b00983.pdf?subformat=pdfa$$xpdfa$$yRestricted 000872769 909CO $$ooai:juser.fz-juelich.de:872769$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000872769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b0$$kFZJ 000872769 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0 000872769 9141_ $$y2019 000872769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000872769 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000872769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM INF MODEL : 2017 000872769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000872769 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000872769 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000872769 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000872769 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000872769 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000872769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000872769 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000872769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000872769 920__ $$lyes 000872769 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0 000872769 9801_ $$aFullTexts 000872769 980__ $$ajournal 000872769 980__ $$aVDB 000872769 980__ $$aUNRESTRICTED 000872769 980__ $$aI:(DE-Juel1)ICS-6-20110106 000872769 981__ $$aI:(DE-Juel1)IBI-7-20200312