000872773 001__ 872773
000872773 005__ 20210130004304.0
000872773 0247_ $$2doi$$a10.1007/s00253-019-09760-9
000872773 0247_ $$2ISSN$$a0171-1741
000872773 0247_ $$2ISSN$$a0175-7598
000872773 0247_ $$2ISSN$$a0340-2118
000872773 0247_ $$2ISSN$$a1432-0614
000872773 0247_ $$2Handle$$a2128/23884
000872773 0247_ $$2pmid$$apmid:30993383
000872773 0247_ $$2WOS$$aWOS:000469192100012
000872773 0247_ $$2altmetric$$aaltmetric:74218252
000872773 037__ $$aFZJ-2020-00251
000872773 082__ $$a570
000872773 1001_ $$0P:(DE-HGF)0$$aWeber, Joanna$$b0
000872773 245__ $$aInteraction of carbohydrate-binding modules with poly(ethylene terephthalate)
000872773 260__ $$aNew York$$bSpringer$$c2019
000872773 3367_ $$2DRIVER$$aarticle
000872773 3367_ $$2DataCite$$aOutput Types/Journal article
000872773 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579529221_30848
000872773 3367_ $$2BibTeX$$aARTICLE
000872773 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872773 3367_ $$00$$2EndNote$$aJournal Article
000872773 520__ $$aPoly(ethylene terephthalate) (PET) is one of the most widely applied synthetic polymers, but its hydrophobicity is challenging for many industrial applications. Biotechnological modification of PET surface can be achieved by PET hydrolyzing cutinases. In order to increase the adsorption towards their unnatural substrate, the enzymes are fused to carbohydrate-binding modules (CBMs) leading to enhanced activity. In this study, we identified novel PET binding CBMs and characterized the CBM-PET interplay. We developed a semi-quantitative method to detect CBMs bound to PET films. Screening of eight CBMs from diverse families for PET binding revealed one CBM that possesses a high affinity towards PET. Molecular dynamics (MD) simulations of the CBM–PET interface revealed tryptophan residues forming an aromatic triad on the peptide surface. Their interaction with phenyl rings of PET is stabilized by additional hydrogen bonds formed between amino acids close to the aromatic triad. Furthermore, the ratio of hydrophobic to polar contacts at the interface was identified as an important feature determining the strength of PET binding of CBMs. The interaction of CBM tryptophan residues with PET was confirmed experimentally by tryptophan quenching measurements after addition of PET nanoparticles to CBM. Our findings are useful for engineering PET hydrolyzing enzymes and may also find applications in functionalization of PET.
000872773 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000872773 588__ $$aDataset connected to CrossRef
000872773 7001_ $$0P:(DE-Juel1)165744$$aPetrović, Dušan$$b1
000872773 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$ufzj
000872773 7001_ $$0P:(DE-HGF)0$$aSmits, Sander H. J.$$b3
000872773 7001_ $$0P:(DE-HGF)0$$aKolkenbrock, Stephan$$b4
000872773 7001_ $$0P:(DE-HGF)0$$aLeggewie, Christian$$b5
000872773 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b6$$eCorresponding author
000872773 773__ $$0PERI:(DE-600)1464336-4$$a10.1007/s00253-019-09760-9$$gVol. 103, no. 12, p. 4801 - 4812$$n12$$p4801 - 4812$$tApplied microbiology and biotechnology$$v103$$x1432-0614$$y2019
000872773 8564_ $$uhttps://juser.fz-juelich.de/record/872773/files/Interaction%20of%20carbohydrate-binding%20modules%20with%20poly%28ethylene%20terephthalate%29.pdf$$yOpenAccess
000872773 8564_ $$uhttps://juser.fz-juelich.de/record/872773/files/Interaction%20of%20carbohydrate-binding%20modules%20with%20poly%28ethylene%20terephthalate%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872773 909CO $$ooai:juser.fz-juelich.de:872773$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b2$$kFZJ
000872773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b6$$kFZJ
000872773 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000872773 9141_ $$y2019
000872773 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872773 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000872773 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872773 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872773 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL MICROBIOL BIOT : 2017
000872773 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872773 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872773 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872773 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872773 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872773 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872773 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000872773 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872773 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000872773 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872773 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000872773 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872773 920__ $$lyes
000872773 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000872773 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x1
000872773 9801_ $$aFullTexts
000872773 980__ $$ajournal
000872773 980__ $$aVDB
000872773 980__ $$aI:(DE-Juel1)ICS-6-20110106
000872773 980__ $$aI:(DE-Juel1)IMET-20090612
000872773 980__ $$aUNRESTRICTED
000872773 981__ $$aI:(DE-Juel1)IBI-7-20200312