000872774 001__ 872774
000872774 005__ 20240712112816.0
000872774 0247_ $$2doi$$a10.1021/acs.jpcc.9b05323
000872774 0247_ $$2ISSN$$a1932-7447
000872774 0247_ $$2ISSN$$a1932-7455
000872774 0247_ $$2Handle$$a2128/23888
000872774 0247_ $$2WOS$$aWOS:000492118400016
000872774 037__ $$aFZJ-2020-00252
000872774 041__ $$aEnglish
000872774 082__ $$a530
000872774 1001_ $$0P:(DE-Juel1)172737$$aPark, Heeyong$$b0
000872774 245__ $$aInsights into Water Interaction at the Interface of Nitrogen-Functionalized Hydrothermal Carbons
000872774 260__ $$aWashington, DC$$bSoc.$$c2019
000872774 3367_ $$2DRIVER$$aarticle
000872774 3367_ $$2DataCite$$aOutput Types/Journal article
000872774 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582029924_1128
000872774 3367_ $$2BibTeX$$aARTICLE
000872774 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872774 3367_ $$00$$2EndNote$$aJournal Article
000872774 520__ $$aHydrothermal carbon (HTC) derived from biomass is a class of cost-efficient, eco-friendly functional carbon materials with various potential applications. In this work, solid-state nuclear magnetic resonance (NMR), longitudinal (T1) relaxation time, and diffusion NMR were employed to investigate the structure and water dynamics for HTC and nitrogen-functionalized hydrothermal carbon (N-HTC) samples ((N)-HTC). Results showed that the presence of N-functional groups influences the water interaction with (N)-HTC more strongly than surface area, pore size distribution, or oxygenated functional groups. Furthermore, the degree of water interaction can be tuned by adjusting the synthesis temperature and the precursor ratio. Water motion was more strongly inhibited in N-HTC than in N-free HTC, thereby suggesting the existence of a differently structured hydration shell around N-HTC particles. In addition, the diffusion data of water in the N-HTC material show two components that do not exchange on the time scale of the experiment (tens of milliseconds), indicating a significant fraction of slow mobile water that exists inside the structure of N-HTC. 1H–2H isotope exchange and cross-polarization NMR results show this internal water only in a near-surface layer of the N-HTC particles. Based on these findings, a model for water interaction with (N)-HTC particles is proposed.
000872774 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000872774 588__ $$aDataset connected to CrossRef
000872774 7001_ $$0P:(DE-Juel1)168465$$aSchleker, P. Philipp M.$$b1$$eCorresponding author
000872774 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b2
000872774 7001_ $$0P:(DE-HGF)0$$aKowalew, Natalia$$b3
000872774 7001_ $$0P:(DE-HGF)0$$aStamm, Teresa$$b4
000872774 7001_ $$0P:(DE-HGF)0$$aSchlögl, Robert$$b5
000872774 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6
000872774 7001_ $$00000-0003-3594-6392$$aHeumann, Saskia$$b7$$eCorresponding author
000872774 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b8
000872774 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.9b05323$$gVol. 123, no. 41, p. 25146 - 25156$$n41$$p25146 - 25156$$tThe journal of physical chemistry <Washington, DC> / C C, Nanomaterials and interfaces$$v123$$x1932-7455$$y2019
000872774 8564_ $$uhttps://juser.fz-juelich.de/record/872774/files/acs.jpcc.9b05323.pdf$$yOpenAccess
000872774 8564_ $$uhttps://juser.fz-juelich.de/record/872774/files/acs.jpcc.9b05323.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872774 909CO $$ooai:juser.fz-juelich.de:872774$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172737$$aForschungszentrum Jülich$$b0$$kFZJ
000872774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b1$$kFZJ
000872774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b2$$kFZJ
000872774 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aMax Planck Institut Mülheim $$b5
000872774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
000872774 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
000872774 9101_ $$0I:(DE-HGF)0$$60000-0003-3594-6392$$aMax Planck Institut $$b7
000872774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b8$$kFZJ
000872774 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b8$$kRWTH
000872774 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000872774 9141_ $$y2019
000872774 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872774 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872774 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2017
000872774 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872774 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872774 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872774 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872774 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872774 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872774 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872774 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872774 920__ $$lyes
000872774 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000872774 9801_ $$aFullTexts
000872774 980__ $$ajournal
000872774 980__ $$aVDB
000872774 980__ $$aI:(DE-Juel1)IEK-9-20110218
000872774 980__ $$aUNRESTRICTED
000872774 981__ $$aI:(DE-Juel1)IET-1-20110218