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Abstract

Summary: The distance geometry problem is often encountered in molecular
biology and the life sciences at large, as a host of experimental methods produce am-
biguous and noisy distance data. In this note, we present diSTruct; an adaptation
of the generic MaxEnt-Stress graph drawing algorithm to the domain of biological
macromolecules. diSTruct is fast, provides reliable structural models even from
incomplete or noisy distance data and integrates access to graph analysis tools.
Availability and Implementation: diSTruct is written in C++, Cython and Python
3. It is available from https://github.com/KIT-MBS/distruct.gitor in the Python
package index under the MIT license.
Contact: al.schug@fz-juelich.de
Supplementary information: Supplementary data is available at Bioinformatics
online.

1 Introduction
Biomolecules orchestrate life at the molecular level. Any detailed insight into
biomolecular function requires information about their structure. Typically, this
structural information stems from experimental techniques such as nuclear magnetic
resonance or X-ray scattering, although theoretical structure prediction techniques
have become more and more accurate. The primary experimental information are,
however, not directly structural models but refraction patterns (X-ray) or chemical
shifts (NMR), which have to be interpreted. Particularly for NMR, assigned chemi-
cal shifts can be translated into distances between specific atoms. Large numbers of
such pairwise distances define an incomplete distance matrix, which must then be
processed to derive a structure for the specific biomolecule. The distance constraints
are used as input for a range of modeling tools, often based on molecular force
fields. For NMR, ARIA (CNS) ([Rieping et al., 2007, Bruger, 2007]), CYANA
([Güntert and Buchner, 2015]), or XPLOR-NIH ([Schwieters et al., 2006]) are pop-
ular examples. Similarly, the co-evolutionary analysis of large sequence alignments
by techniques such as Direct Coupling Analysis provides information about spatial
adjacency between residue pairs([Schug et al., 2009]). Apart from proteins, the
challenge of interpreting distance matrices into structural models, the distance ge-
ometry problem, occurs also on other biological scales, e.g. in the case of HI-C data
of chromatin strands providing distance information about chromosomal structure
([Lieberman-Aiden et al., 2009]). Often the structure cannot be derived uniquely
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from the provided data. Instead, computationally demanding simulations based on
empirical force fields and constrained by experimental data are run.

Here, we directly solve the distance geometry problem for arbitrary distance data
from experimental or other sources. The key achievements are speed of interpre-
tation, minimizing the error with respect to constraints and the ability to deal with
sparse and noisy data. The rapid construction of 3D-models even for a large protein
of 700 amino acids takes only on the order of 10 seconds on common CPUs. This
allows to interactively interpret possible sources of ambiguity or errors in the input
distance data and helps to improve, e.g., NMR shift assignment.

The algorithm is implemented in the python package diSTruct. diSTruct
builds on Biopython ([Cock et al., 2009, Hamelryck and Manderick, 2003]), a toolkit
for computational biology, and the NetworKit ([Staudt et al., 2016]) package for
graph analysis. Our design focus is to provide an interactive python-based toolkit
that a) provides structural models from distance data with minimal constraint errors,
b) is able to handle noisy and incomplete data, c) maintains familiarity for users
that know Biopython, and d) provides an interface from biological context to a rich
graph analysis suite.

2 Method
At a basic level, diSTruct requires a matrix of inter-vertex distances (edges) as
input. The individual vertices can be atoms or arbitrary beads. The edges have to
form a connected graph and can be weighted (see below). For biomolecules basic
constraints can be derived from their sequence and the known chemical structures
of amino or nucleic acids. Due to theoretical considerations, a structure of N ver-
tices requires 3N independent constraints; one per degree of freedom. Sequence
information for biomolecules provides roughly two non-redundant constraints per
atom: The bond distance between two neighboring atoms and the angle between
two neighboring bonds. In this case, one additional constraint per atom should
suffice for a well-defined structure.
The structure generation algorithm employed is MaxEnt-Stress graph drawing
([Hu et al., 2013]), similar to the implementation in the NetworKit suite ([Wegner et al., 2017]).
It minimizes the total stress of the system

T =
∑
uv∈E

ωuv(||~ru − ~rv|| − duv)2 − αS({~r}) !
= min , (1)

where duv is the target distance between vertices u and v, ωuv is the edge-weight
and αS realizes a repulsive force between all vertices.
This can be written in terms of Laplacian matrices of the graph:

Lri = Ld(~r)ri + α b(~r), (2)

for i ∈ 1, 2, 3 in three spatial dimensions, where each systems dimension is equal
to the number of atoms. The three systems are solved iteratively in parallel. A
detailed description is given in the SI. Fig. 1 shows different observable results
for an example protein (PDB code 1mqq ([Golan et al., 2004])). Input edges are
a random subset of all atom pairs in the reference structure closer than 5 Å. The
squared edge error (cf. SI Eq. 15) measures how well the input constraints are
realized. It can be considered globally (averaged over all edges), locally (averaged
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Figure 1: Reconstruction of protein structure for (PDB code 1mqq 675 amino acids,
[Golan et al., 2004]) based on an incomplete distance matrix. We use the protein se-
quence and randomly chosen additional inter-atomic distances (m is the number of
additional edges per vertex). On the left from top to bottom: RMSD to blue reference
structure, error2 (see SI Eq. 15) and runtime. For every number of edges used, results
are shown for ten different sets of randomly chosen edges. The right hand side displays
an exemplary output structure for m = 1.5 colored by squared local error from 0Å
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(green) to 0.05Å
2

(red).

over one participating vertex), or individually. Since distance matrices are typically
noisy or even erroneous, a structure generation engine has to be robust to such
input. The supporting information contains more information on different systems,
robustness and evaluation of the resulting model.

3 Conclusion
We present the first release of diSTruct, our python based tool to generate
molecular structures from distance constraints. It provides a familiar interface
to a generic algorithm and powerful analysis tools.
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