000872811 001__ 872811
000872811 005__ 20250701125909.0
000872811 0247_ $$2doi$$a10.1016/j.ijhydene.2020.01.074
000872811 0247_ $$2Handle$$a2128/24503
000872811 0247_ $$2WOS$$aWOS:000523643400081
000872811 037__ $$aFZJ-2020-00283
000872811 082__ $$a620
000872811 1001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b0$$eCorresponding author
000872811 245__ $$aLong-term operation of solid oxide fuel cells and preliminary findings on accelerated testing
000872811 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000872811 3367_ $$2DRIVER$$aarticle
000872811 3367_ $$2DataCite$$aOutput Types/Journal article
000872811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583755354_29854
000872811 3367_ $$2BibTeX$$aARTICLE
000872811 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872811 3367_ $$00$$2EndNote$$aJournal Article
000872811 520__ $$aStationary applications of Solid Oxide Fuel Cell systems require operating times of 40,000 to 80,000 h for market introduction. Therefore, extended lifetime tests are essential for learning about the long-term behavior and various degradation mechanisms and to foster ideas about accelerated stack testing. The Forschungszentrum Jülich has been gradually extending the testing time, resulting in successful short-stack operating times of between 20,000 and 40,000 h. This work highlights the results of these long-term tests and compares the observations for different material combinations, operating temperatures of 700 and 800 °C, including different fuel utilizations and gas compositions. An increase of temperature from 700 to 800 °C leads to an acceleration of the degradation rate by a factor of 1.5–2. Meanwhile, an increase in fuel utilization from 40 to 80% did not result in increased degradation. The same was found for higher current densities of up to 1 Acm−2.
000872811 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000872811 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000872811 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b1
000872811 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b2
000872811 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b3
000872811 7001_ $$0P:(DE-Juel1)133667$$aGross-Barsnick, Sonja-Michaela$$b4
000872811 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b5
000872811 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2020.01.074$$n15$$p8955-8964$$tInternational journal of hydrogen energy$$v45$$x0360-3199$$y2020
000872811 8564_ $$uhttps://juser.fz-juelich.de/record/872811/files/HE-D-19-05471R1_Long-term%20testing%20of%20SOFC_Bl_final_review%20%28200109%29_unmarked.pdf$$yPublished on 2020-02-12. Available in OpenAccess from 2022-02-12.
000872811 8564_ $$uhttps://juser.fz-juelich.de/record/872811/files/HE-D-19-05471R1_Long-term%20testing%20of%20SOFC_Bl_final_review%20%28200109%29_unmarked.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-12. Available in OpenAccess from 2022-02-12.
000872811 909CO $$ooai:juser.fz-juelich.de:872811$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b0$$kFZJ
000872811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b1$$kFZJ
000872811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b2$$kFZJ
000872811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b3$$kFZJ
000872811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133667$$aForschungszentrum Jülich$$b4$$kFZJ
000872811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b5$$kFZJ
000872811 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000872811 9141_ $$y2020
000872811 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872811 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872811 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872811 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000872811 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000872811 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872811 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872811 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872811 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872811 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872811 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872811 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872811 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872811 920__ $$lyes
000872811 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000872811 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000872811 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x2
000872811 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x3
000872811 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x4
000872811 9801_ $$aFullTexts
000872811 980__ $$ajournal
000872811 980__ $$aVDB
000872811 980__ $$aUNRESTRICTED
000872811 980__ $$aI:(DE-Juel1)IEK-14-20191129
000872811 980__ $$aI:(DE-Juel1)IEK-9-20110218
000872811 980__ $$aI:(DE-Juel1)IEK-2-20101013
000872811 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000872811 980__ $$aI:(DE-Juel1)IEK-1-20101013
000872811 981__ $$aI:(DE-Juel1)ITE-20250108
000872811 981__ $$aI:(DE-Juel1)IMD-1-20101013
000872811 981__ $$aI:(DE-Juel1)IET-4-20191129
000872811 981__ $$aI:(DE-Juel1)IET-1-20110218
000872811 981__ $$aI:(DE-Juel1)IMD-2-20101013